ray/rllib/env/utils.py

113 lines
4.1 KiB
Python

from gym import wrappers
import os
import re
from ray.rllib.env.env_context import EnvContext
def gym_env_creator(env_context: EnvContext, env_descriptor: str):
"""Tries to create a gym env given an EnvContext object and descriptor.
Note: This function tries to construct the env from a string descriptor
only using possibly installed RL env packages (such as gym, pybullet_envs,
vizdoomgym, etc..). These packages are no installation requirements for
RLlib. In case you would like to support more such env packages, add the
necessary imports and construction logic below.
Args:
env_context (EnvContext): The env context object to configure the env.
Note that this is a config dict, plus the properties:
`worker_index`, `vector_index`, and `remote`.
env_descriptor (str): The env descriptor, e.g. CartPole-v0,
MsPacmanNoFrameskip-v4, VizdoomBasic-v0, or
CartPoleContinuousBulletEnv-v0.
Returns:
gym.Env: The actual gym environment object.
Raises:
gym.error.Error: If the env cannot be constructed.
"""
import gym
# Allow for PyBullet or VizdoomGym envs to be used as well
# (via string). This allows for doing things like
# `env=CartPoleContinuousBulletEnv-v0` or
# `env=VizdoomBasic-v0`.
try:
import pybullet_envs
pybullet_envs.getList()
except (ModuleNotFoundError, ImportError):
pass
try:
import vizdoomgym
vizdoomgym.__name__ # trick LINTer.
except (ModuleNotFoundError, ImportError):
pass
# Try creating a gym env. If this fails we can output a
# decent error message.
try:
return gym.make(env_descriptor, **env_context)
except gym.error.Error:
error_msg = f"The env string you provided ('{env_descriptor}') is:" + \
"""
a) Not a supported/installed environment.
b) Not a tune-registered environment creator.
c) Not a valid env class string.
Try one of the following:
a) For Atari support: `pip install gym[atari] atari_py`.
For VizDoom support: Install VizDoom
(https://github.com/mwydmuch/ViZDoom/blob/master/doc/Building.md) and
`pip install vizdoomgym`.
For PyBullet support: `pip install pybullet pybullet_envs`.
b) To register your custom env, do `from ray import tune;
tune.register('[name]', lambda cfg: [return env obj from here using cfg])`.
Then in your config, do `config['env'] = [name]`.
c) Make sure you provide a fully qualified classpath, e.g.:
`ray.rllib.examples.env.repeat_after_me_env.RepeatAfterMeEnv`
"""
raise gym.error.Error(error_msg)
class VideoMonitor(wrappers.Monitor):
# Same as original method, but doesn't use the StatsRecorder as it will
# try to add up multi-agent rewards dicts, which throws errors.
def _after_step(self, observation, reward, done, info):
if not self.enabled:
return done
# Use done["__all__"] b/c this is a multi-agent dict.
if done["__all__"] and self.env_semantics_autoreset:
# For envs with BlockingReset wrapping VNCEnv, this observation
# will be the first one of the new episode
self.reset_video_recorder()
self.episode_id += 1
self._flush()
# Record video
self.video_recorder.capture_frame()
return done
def record_env_wrapper(env, record_env, log_dir, policy_config):
if record_env:
path_ = record_env if isinstance(record_env, str) else log_dir
# Relative path: Add logdir here, otherwise, this would
# not work for non-local workers.
if not re.search("[/\\\]", path_):
path_ = os.path.join(log_dir, path_)
print(f"Setting the path for recording to {path_}")
from ray.rllib.env.multi_agent_env import MultiAgentEnv
wrapper_cls = VideoMonitor if isinstance(env, MultiAgentEnv) \
else wrappers.Monitor
env = wrapper_cls(
env,
path_,
resume=True,
force=True,
video_callable=lambda _: True,
mode="evaluation"
if policy_config["in_evaluation"] else "training")
return env