ray/rllib/execution/train_ops.py
2020-05-21 10:16:18 -07:00

388 lines
16 KiB
Python

from collections import defaultdict
import logging
import numpy as np
import math
from typing import List
import ray
from ray.rllib.evaluation.metrics import get_learner_stats, LEARNER_STATS_KEY
from ray.rllib.evaluation.worker_set import WorkerSet
from ray.rllib.execution.common import SampleBatchType, \
STEPS_SAMPLED_COUNTER, STEPS_TRAINED_COUNTER, LEARNER_INFO, \
APPLY_GRADS_TIMER, COMPUTE_GRADS_TIMER, WORKER_UPDATE_TIMER, \
LEARN_ON_BATCH_TIMER, LOAD_BATCH_TIMER, LAST_TARGET_UPDATE_TS, \
NUM_TARGET_UPDATES, _get_global_vars, _check_sample_batch_type, \
_get_shared_metrics
from ray.rllib.execution.multi_gpu_impl import LocalSyncParallelOptimizer
from ray.rllib.policy.policy import PolicyID
from ray.rllib.policy.sample_batch import SampleBatch, DEFAULT_POLICY_ID, \
MultiAgentBatch
from ray.rllib.utils import try_import_tf
from ray.rllib.utils.sgd import do_minibatch_sgd, averaged
tf = try_import_tf()
logger = logging.getLogger(__name__)
class TrainOneStep:
"""Callable that improves the policy and updates workers.
This should be used with the .for_each() operator. A tuple of the input
and learner stats will be returned.
Examples:
>>> rollouts = ParallelRollouts(...)
>>> train_op = rollouts.for_each(TrainOneStep(workers))
>>> print(next(train_op)) # This trains the policy on one batch.
SampleBatch(...), {"learner_stats": ...}
Updates the STEPS_TRAINED_COUNTER counter and LEARNER_INFO field in the
local iterator context.
"""
def __init__(self,
workers: WorkerSet,
policies: List[PolicyID] = frozenset([]),
num_sgd_iter: int = 1,
sgd_minibatch_size: int = 0):
self.workers = workers
self.policies = policies or workers.local_worker().policies_to_train
self.num_sgd_iter = num_sgd_iter
self.sgd_minibatch_size = sgd_minibatch_size
def __call__(self,
batch: SampleBatchType) -> (SampleBatchType, List[dict]):
_check_sample_batch_type(batch)
metrics = _get_shared_metrics()
learn_timer = metrics.timers[LEARN_ON_BATCH_TIMER]
with learn_timer:
if self.num_sgd_iter > 1 or self.sgd_minibatch_size > 0:
w = self.workers.local_worker()
info = do_minibatch_sgd(
batch, {p: w.get_policy(p)
for p in self.policies}, w, self.num_sgd_iter,
self.sgd_minibatch_size, [])
# TODO(ekl) shouldn't be returning learner stats directly here
metrics.info[LEARNER_INFO] = info
else:
info = self.workers.local_worker().learn_on_batch(batch)
metrics.info[LEARNER_INFO] = get_learner_stats(info)
learn_timer.push_units_processed(batch.count)
metrics.counters[STEPS_TRAINED_COUNTER] += batch.count
if self.workers.remote_workers():
with metrics.timers[WORKER_UPDATE_TIMER]:
weights = ray.put(self.workers.local_worker().get_weights(
self.policies))
for e in self.workers.remote_workers():
e.set_weights.remote(weights, _get_global_vars())
# Also update global vars of the local worker.
self.workers.local_worker().set_global_vars(_get_global_vars())
return batch, info
class TrainTFMultiGPU:
"""TF Multi-GPU version of TrainOneStep.
This should be used with the .for_each() operator. A tuple of the input
and learner stats will be returned.
Examples:
>>> rollouts = ParallelRollouts(...)
>>> train_op = rollouts.for_each(TrainMultiGPU(workers, ...))
>>> print(next(train_op)) # This trains the policy on one batch.
SampleBatch(...), {"learner_stats": ...}
Updates the STEPS_TRAINED_COUNTER counter and LEARNER_INFO field in the
local iterator context.
"""
def __init__(self,
workers: WorkerSet,
sgd_minibatch_size: int,
num_sgd_iter: int,
num_gpus: int,
rollout_fragment_length: int,
num_envs_per_worker: int,
train_batch_size: int,
shuffle_sequences: bool,
policies: List[PolicyID] = frozenset([]),
_fake_gpus: bool = False):
self.workers = workers
self.policies = policies or workers.local_worker().policies_to_train
self.num_sgd_iter = num_sgd_iter
self.sgd_minibatch_size = sgd_minibatch_size
self.shuffle_sequences = shuffle_sequences
# Collect actual devices to use.
if not num_gpus:
_fake_gpus = True
num_gpus = 1
type_ = "cpu" if _fake_gpus else "gpu"
self.devices = [
"/{}:{}".format(type_, i) for i in range(int(math.ceil(num_gpus)))
]
self.batch_size = int(sgd_minibatch_size / len(self.devices)) * len(
self.devices)
assert self.batch_size % len(self.devices) == 0
assert self.batch_size >= len(self.devices), "batch size too small"
self.per_device_batch_size = int(self.batch_size / len(self.devices))
# per-GPU graph copies created below must share vars with the policy
# reuse is set to AUTO_REUSE because Adam nodes are created after
# all of the device copies are created.
self.optimizers = {}
with self.workers.local_worker().tf_sess.graph.as_default():
with self.workers.local_worker().tf_sess.as_default():
for policy_id in self.policies:
policy = self.workers.local_worker().get_policy(policy_id)
with tf.variable_scope(policy_id, reuse=tf.AUTO_REUSE):
if policy._state_inputs:
rnn_inputs = policy._state_inputs + [
policy._seq_lens
]
else:
rnn_inputs = []
self.optimizers[policy_id] = (
LocalSyncParallelOptimizer(
policy._optimizer, self.devices,
[v
for _, v in policy._loss_inputs], rnn_inputs,
self.per_device_batch_size, policy.copy))
self.sess = self.workers.local_worker().tf_sess
self.sess.run(tf.global_variables_initializer())
def __call__(self,
samples: SampleBatchType) -> (SampleBatchType, List[dict]):
_check_sample_batch_type(samples)
# Handle everything as if multiagent
if isinstance(samples, SampleBatch):
samples = MultiAgentBatch({
DEFAULT_POLICY_ID: samples
}, samples.count)
metrics = _get_shared_metrics()
load_timer = metrics.timers[LOAD_BATCH_TIMER]
learn_timer = metrics.timers[LEARN_ON_BATCH_TIMER]
with load_timer:
# (1) Load data into GPUs.
num_loaded_tuples = {}
for policy_id, batch in samples.policy_batches.items():
if policy_id not in self.policies:
continue
policy = self.workers.local_worker().get_policy(policy_id)
policy._debug_vars()
tuples = policy._get_loss_inputs_dict(
batch, shuffle=self.shuffle_sequences)
data_keys = [ph for _, ph in policy._loss_inputs]
if policy._state_inputs:
state_keys = policy._state_inputs + [policy._seq_lens]
else:
state_keys = []
num_loaded_tuples[policy_id] = (
self.optimizers[policy_id].load_data(
self.sess, [tuples[k] for k in data_keys],
[tuples[k] for k in state_keys]))
with learn_timer:
# (2) Execute minibatch SGD on loaded data.
fetches = {}
for policy_id, tuples_per_device in num_loaded_tuples.items():
optimizer = self.optimizers[policy_id]
num_batches = max(
1,
int(tuples_per_device) // int(self.per_device_batch_size))
logger.debug("== sgd epochs for {} ==".format(policy_id))
for i in range(self.num_sgd_iter):
iter_extra_fetches = defaultdict(list)
permutation = np.random.permutation(num_batches)
for batch_index in range(num_batches):
batch_fetches = optimizer.optimize(
self.sess, permutation[batch_index] *
self.per_device_batch_size)
for k, v in batch_fetches[LEARNER_STATS_KEY].items():
iter_extra_fetches[k].append(v)
if logger.getEffectiveLevel() <= logging.DEBUG:
avg = averaged(iter_extra_fetches)
logger.debug("{} {}".format(i, avg))
fetches[policy_id] = averaged(iter_extra_fetches, axis=0)
load_timer.push_units_processed(samples.count)
learn_timer.push_units_processed(samples.count)
metrics.counters[STEPS_TRAINED_COUNTER] += samples.count
metrics.info[LEARNER_INFO] = fetches
if self.workers.remote_workers():
with metrics.timers[WORKER_UPDATE_TIMER]:
weights = ray.put(self.workers.local_worker().get_weights(
self.policies))
for e in self.workers.remote_workers():
e.set_weights.remote(weights, _get_global_vars())
# Also update global vars of the local worker.
self.workers.local_worker().set_global_vars(_get_global_vars())
return samples, fetches
class ComputeGradients:
"""Callable that computes gradients with respect to the policy loss.
This should be used with the .for_each() operator.
Examples:
>>> grads_op = rollouts.for_each(ComputeGradients(workers))
>>> print(next(grads_op))
{"var_0": ..., ...}, 50 # grads, batch count
Updates the LEARNER_INFO info field in the local iterator context.
"""
def __init__(self, workers):
self.workers = workers
def __call__(self, samples: SampleBatchType):
_check_sample_batch_type(samples)
metrics = _get_shared_metrics()
with metrics.timers[COMPUTE_GRADS_TIMER]:
grad, info = self.workers.local_worker().compute_gradients(samples)
metrics.info[LEARNER_INFO] = get_learner_stats(info)
return grad, samples.count
class ApplyGradients:
"""Callable that applies gradients and updates workers.
This should be used with the .for_each() operator.
Examples:
>>> apply_op = grads_op.for_each(ApplyGradients(workers))
>>> print(next(apply_op))
None
Updates the STEPS_TRAINED_COUNTER counter in the local iterator context.
"""
def __init__(self,
workers,
policies: List[PolicyID] = frozenset([]),
update_all=True):
"""Creates an ApplyGradients instance.
Arguments:
workers (WorkerSet): workers to apply gradients to.
update_all (bool): If true, updates all workers. Otherwise, only
update the worker that produced the sample batch we are
currently processing (i.e., A3C style).
"""
self.workers = workers
self.policies = policies or workers.local_worker().policies_to_train
self.update_all = update_all
def __call__(self, item):
if not isinstance(item, tuple) or len(item) != 2:
raise ValueError(
"Input must be a tuple of (grad_dict, count), got {}".format(
item))
gradients, count = item
metrics = _get_shared_metrics()
metrics.counters[STEPS_TRAINED_COUNTER] += count
apply_timer = metrics.timers[APPLY_GRADS_TIMER]
with apply_timer:
self.workers.local_worker().apply_gradients(gradients)
apply_timer.push_units_processed(count)
# Also update global vars of the local worker.
self.workers.local_worker().set_global_vars(_get_global_vars())
if self.update_all:
if self.workers.remote_workers():
with metrics.timers[WORKER_UPDATE_TIMER]:
weights = ray.put(self.workers.local_worker().get_weights(
self.policies))
for e in self.workers.remote_workers():
e.set_weights.remote(weights, _get_global_vars())
else:
if metrics.current_actor is None:
raise ValueError(
"Could not find actor to update. When "
"update_all=False, `current_actor` must be set "
"in the iterator context.")
with metrics.timers[WORKER_UPDATE_TIMER]:
weights = self.workers.local_worker().get_weights(
self.policies)
metrics.current_actor.set_weights.remote(
weights, _get_global_vars())
class AverageGradients:
"""Callable that averages the gradients in a batch.
This should be used with the .for_each() operator after a set of gradients
have been batched with .batch().
Examples:
>>> batched_grads = grads_op.batch(32)
>>> avg_grads = batched_grads.for_each(AverageGradients())
>>> print(next(avg_grads))
{"var_0": ..., ...}, 1600 # averaged grads, summed batch count
"""
def __call__(self, gradients):
acc = None
sum_count = 0
for grad, count in gradients:
if acc is None:
acc = grad
else:
acc = [a + b for a, b in zip(acc, grad)]
sum_count += count
logger.info("Computing average of {} microbatch gradients "
"({} samples total)".format(len(gradients), sum_count))
return acc, sum_count
class UpdateTargetNetwork:
"""Periodically call policy.update_target() on all trainable policies.
This should be used with the .for_each() operator after training step
has been taken.
Examples:
>>> train_op = ParallelRollouts(...).for_each(TrainOneStep(...))
>>> update_op = train_op.for_each(
... UpdateTargetIfNeeded(workers, target_update_freq=500))
>>> print(next(update_op))
None
Updates the LAST_TARGET_UPDATE_TS and NUM_TARGET_UPDATES counters in the
local iterator context. The value of the last update counter is used to
track when we should update the target next.
"""
def __init__(self,
workers,
target_update_freq,
by_steps_trained=False,
policies=frozenset([])):
self.workers = workers
self.target_update_freq = target_update_freq
self.policies = (policies or workers.local_worker().policies_to_train)
if by_steps_trained:
self.metric = STEPS_TRAINED_COUNTER
else:
self.metric = STEPS_SAMPLED_COUNTER
def __call__(self, _):
metrics = _get_shared_metrics()
cur_ts = metrics.counters[self.metric]
last_update = metrics.counters[LAST_TARGET_UPDATE_TS]
if cur_ts - last_update > self.target_update_freq:
to_update = self.policies
self.workers.local_worker().foreach_trainable_policy(
lambda p, p_id: p_id in to_update and p.update_target())
metrics.counters[NUM_TARGET_UPDATES] += 1
metrics.counters[LAST_TARGET_UPDATE_TS] = cur_ts