mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
309 lines
9.9 KiB
Python
309 lines
9.9 KiB
Python
from collections import deque
|
|
import gym
|
|
from gym import spaces
|
|
import numpy as np
|
|
|
|
from ray.rllib.utils.images import rgb2gray, resize
|
|
|
|
|
|
def is_atari(env):
|
|
if (hasattr(env.observation_space, "shape")
|
|
and env.observation_space.shape is not None
|
|
and len(env.observation_space.shape) <= 2):
|
|
return False
|
|
return hasattr(env, "unwrapped") and hasattr(env.unwrapped, "ale")
|
|
|
|
|
|
def get_wrapper_by_cls(env, cls):
|
|
"""Returns the gym env wrapper of the given class, or None."""
|
|
currentenv = env
|
|
while True:
|
|
if isinstance(currentenv, cls):
|
|
return currentenv
|
|
elif isinstance(currentenv, gym.Wrapper):
|
|
currentenv = currentenv.env
|
|
else:
|
|
return None
|
|
|
|
|
|
class MonitorEnv(gym.Wrapper):
|
|
def __init__(self, env=None):
|
|
"""Record episodes stats prior to EpisodicLifeEnv, etc."""
|
|
gym.Wrapper.__init__(self, env)
|
|
self._current_reward = None
|
|
self._num_steps = None
|
|
self._total_steps = None
|
|
self._episode_rewards = []
|
|
self._episode_lengths = []
|
|
self._num_episodes = 0
|
|
self._num_returned = 0
|
|
|
|
def reset(self, **kwargs):
|
|
obs = self.env.reset(**kwargs)
|
|
|
|
if self._total_steps is None:
|
|
self._total_steps = sum(self._episode_lengths)
|
|
|
|
if self._current_reward is not None:
|
|
self._episode_rewards.append(self._current_reward)
|
|
self._episode_lengths.append(self._num_steps)
|
|
self._num_episodes += 1
|
|
|
|
self._current_reward = 0
|
|
self._num_steps = 0
|
|
|
|
return obs
|
|
|
|
def step(self, action):
|
|
obs, rew, done, info = self.env.step(action)
|
|
self._current_reward += rew
|
|
self._num_steps += 1
|
|
self._total_steps += 1
|
|
return (obs, rew, done, info)
|
|
|
|
def get_episode_rewards(self):
|
|
return self._episode_rewards
|
|
|
|
def get_episode_lengths(self):
|
|
return self._episode_lengths
|
|
|
|
def get_total_steps(self):
|
|
return self._total_steps
|
|
|
|
def next_episode_results(self):
|
|
for i in range(self._num_returned, len(self._episode_rewards)):
|
|
yield (self._episode_rewards[i], self._episode_lengths[i])
|
|
self._num_returned = len(self._episode_rewards)
|
|
|
|
|
|
class NoopResetEnv(gym.Wrapper):
|
|
def __init__(self, env, noop_max=30):
|
|
"""Sample initial states by taking random number of no-ops on reset.
|
|
No-op is assumed to be action 0.
|
|
"""
|
|
gym.Wrapper.__init__(self, env)
|
|
self.noop_max = noop_max
|
|
self.override_num_noops = None
|
|
self.noop_action = 0
|
|
assert env.unwrapped.get_action_meanings()[0] == "NOOP"
|
|
|
|
def reset(self, **kwargs):
|
|
""" Do no-op action for a number of steps in [1, noop_max]."""
|
|
self.env.reset(**kwargs)
|
|
if self.override_num_noops is not None:
|
|
noops = self.override_num_noops
|
|
else:
|
|
noops = self.unwrapped.np_random.randint(1, self.noop_max + 1)
|
|
assert noops > 0
|
|
obs = None
|
|
for _ in range(noops):
|
|
obs, _, done, _ = self.env.step(self.noop_action)
|
|
if done:
|
|
obs = self.env.reset(**kwargs)
|
|
return obs
|
|
|
|
def step(self, ac):
|
|
return self.env.step(ac)
|
|
|
|
|
|
class ClipRewardEnv(gym.RewardWrapper):
|
|
def __init__(self, env):
|
|
gym.RewardWrapper.__init__(self, env)
|
|
|
|
def reward(self, reward):
|
|
"""Bin reward to {+1, 0, -1} by its sign."""
|
|
return np.sign(reward)
|
|
|
|
|
|
class FireResetEnv(gym.Wrapper):
|
|
def __init__(self, env):
|
|
"""Take action on reset.
|
|
|
|
For environments that are fixed until firing."""
|
|
gym.Wrapper.__init__(self, env)
|
|
assert env.unwrapped.get_action_meanings()[1] == "FIRE"
|
|
assert len(env.unwrapped.get_action_meanings()) >= 3
|
|
|
|
def reset(self, **kwargs):
|
|
self.env.reset(**kwargs)
|
|
obs, _, done, _ = self.env.step(1)
|
|
if done:
|
|
self.env.reset(**kwargs)
|
|
obs, _, done, _ = self.env.step(2)
|
|
if done:
|
|
self.env.reset(**kwargs)
|
|
return obs
|
|
|
|
def step(self, ac):
|
|
return self.env.step(ac)
|
|
|
|
|
|
class EpisodicLifeEnv(gym.Wrapper):
|
|
def __init__(self, env):
|
|
"""Make end-of-life == end-of-episode, but only reset on true game over.
|
|
Done by DeepMind for the DQN and co. since it helps value estimation.
|
|
"""
|
|
gym.Wrapper.__init__(self, env)
|
|
self.lives = 0
|
|
self.was_real_done = True
|
|
|
|
def step(self, action):
|
|
obs, reward, done, info = self.env.step(action)
|
|
self.was_real_done = done
|
|
# check current lives, make loss of life terminal,
|
|
# then update lives to handle bonus lives
|
|
lives = self.env.unwrapped.ale.lives()
|
|
if lives < self.lives and lives > 0:
|
|
# for Qbert sometimes we stay in lives == 0 condtion for a few fr
|
|
# so its important to keep lives > 0, so that we only reset once
|
|
# the environment advertises done.
|
|
done = True
|
|
self.lives = lives
|
|
return obs, reward, done, info
|
|
|
|
def reset(self, **kwargs):
|
|
"""Reset only when lives are exhausted.
|
|
This way all states are still reachable even though lives are episodic,
|
|
and the learner need not know about any of this behind-the-scenes.
|
|
"""
|
|
if self.was_real_done:
|
|
obs = self.env.reset(**kwargs)
|
|
else:
|
|
# no-op step to advance from terminal/lost life state
|
|
obs, _, _, _ = self.env.step(0)
|
|
self.lives = self.env.unwrapped.ale.lives()
|
|
return obs
|
|
|
|
|
|
class MaxAndSkipEnv(gym.Wrapper):
|
|
def __init__(self, env, skip=4):
|
|
"""Return only every `skip`-th frame"""
|
|
gym.Wrapper.__init__(self, env)
|
|
# most recent raw observations (for max pooling across time steps)
|
|
self._obs_buffer = np.zeros(
|
|
(2, ) + env.observation_space.shape, dtype=np.uint8)
|
|
self._skip = skip
|
|
|
|
def step(self, action):
|
|
"""Repeat action, sum reward, and max over last observations."""
|
|
total_reward = 0.0
|
|
done = None
|
|
for i in range(self._skip):
|
|
obs, reward, done, info = self.env.step(action)
|
|
if i == self._skip - 2:
|
|
self._obs_buffer[0] = obs
|
|
if i == self._skip - 1:
|
|
self._obs_buffer[1] = obs
|
|
total_reward += reward
|
|
if done:
|
|
break
|
|
# Note that the observation on the done=True frame
|
|
# doesn't matter
|
|
max_frame = self._obs_buffer.max(axis=0)
|
|
|
|
return max_frame, total_reward, done, info
|
|
|
|
def reset(self, **kwargs):
|
|
return self.env.reset(**kwargs)
|
|
|
|
|
|
class WarpFrame(gym.ObservationWrapper):
|
|
def __init__(self, env, dim):
|
|
"""Warp frames to the specified size (dim x dim)."""
|
|
gym.ObservationWrapper.__init__(self, env)
|
|
self.width = dim
|
|
self.height = dim
|
|
self.observation_space = spaces.Box(
|
|
low=0,
|
|
high=255,
|
|
shape=(self.height, self.width, 1),
|
|
dtype=np.uint8)
|
|
|
|
def observation(self, frame):
|
|
frame = rgb2gray(frame)
|
|
frame = resize(frame, height=self.height, width=self.width)
|
|
return frame[:, :, None]
|
|
|
|
|
|
# TODO: (sven) Deprecated class. Remove once traj. view is the norm.
|
|
class FrameStack(gym.Wrapper):
|
|
def __init__(self, env, k):
|
|
"""Stack k last frames."""
|
|
gym.Wrapper.__init__(self, env)
|
|
self.k = k
|
|
self.frames = deque([], maxlen=k)
|
|
shp = env.observation_space.shape
|
|
self.observation_space = spaces.Box(
|
|
low=0,
|
|
high=255,
|
|
shape=(shp[0], shp[1], shp[2] * k),
|
|
dtype=env.observation_space.dtype)
|
|
|
|
def reset(self):
|
|
ob = self.env.reset()
|
|
for _ in range(self.k):
|
|
self.frames.append(ob)
|
|
return self._get_ob()
|
|
|
|
def step(self, action):
|
|
ob, reward, done, info = self.env.step(action)
|
|
self.frames.append(ob)
|
|
return self._get_ob(), reward, done, info
|
|
|
|
def _get_ob(self):
|
|
assert len(self.frames) == self.k
|
|
return np.concatenate(self.frames, axis=2)
|
|
|
|
|
|
class FrameStackTrajectoryView(gym.ObservationWrapper):
|
|
def __init__(self, env):
|
|
"""No stacking. Trajectory View API takes care of this."""
|
|
gym.Wrapper.__init__(self, env)
|
|
shp = env.observation_space.shape
|
|
assert shp[2] == 1
|
|
self.observation_space = spaces.Box(
|
|
low=0,
|
|
high=255,
|
|
shape=(shp[0], shp[1]),
|
|
dtype=env.observation_space.dtype)
|
|
|
|
def observation(self, observation):
|
|
return np.squeeze(observation, axis=-1)
|
|
|
|
|
|
class ScaledFloatFrame(gym.ObservationWrapper):
|
|
def __init__(self, env):
|
|
gym.ObservationWrapper.__init__(self, env)
|
|
self.observation_space = gym.spaces.Box(
|
|
low=0, high=1, shape=env.observation_space.shape, dtype=np.float32)
|
|
|
|
def observation(self, observation):
|
|
# careful! This undoes the memory optimization, use
|
|
# with smaller replay buffers only.
|
|
return np.array(observation).astype(np.float32) / 255.0
|
|
|
|
|
|
def wrap_deepmind(env, dim=84, framestack=True):
|
|
"""Configure environment for DeepMind-style Atari.
|
|
|
|
Note that we assume reward clipping is done outside the wrapper.
|
|
|
|
Args:
|
|
env (EnvType): The env object to wrap.
|
|
dim (int): Dimension to resize observations to (dim x dim).
|
|
framestack (bool): Whether to framestack observations.
|
|
"""
|
|
env = MonitorEnv(env)
|
|
env = NoopResetEnv(env, noop_max=30)
|
|
if env.spec is not None and "NoFrameskip" in env.spec.id:
|
|
env = MaxAndSkipEnv(env, skip=4)
|
|
env = EpisodicLifeEnv(env)
|
|
if "FIRE" in env.unwrapped.get_action_meanings():
|
|
env = FireResetEnv(env)
|
|
env = WarpFrame(env, dim)
|
|
# env = ScaledFloatFrame(env) # TODO: use for dqn?
|
|
# env = ClipRewardEnv(env) # reward clipping is handled by policy eval
|
|
# 4x image framestacking.
|
|
if framestack is True:
|
|
env = FrameStack(env, 4)
|
|
return env
|