ray/doc/source/data/creating-datasets.rst
2022-03-18 11:25:43 -07:00

69 lines
2.1 KiB
ReStructuredText

.. _creating_datasets:
=================
Creating Datasets
=================
You can get started by creating Datasets from synthetic data using ``ray.data.range()`` and ``ray.data.from_items()``.
Datasets can hold either plain Python objects (i.e. their schema is a Python type), or Arrow records
(in which case their schema is Arrow).
.. code-block:: python
import ray
# Create a Dataset of Python objects.
ds = ray.data.range(10000)
# -> Dataset(num_blocks=200, num_rows=10000, schema=<class 'int'>)
ds.take(5)
# -> [0, 1, 2, 3, 4]
ds.count()
# -> 10000
# Create a Dataset of Arrow records.
ds = ray.data.from_items([{"col1": i, "col2": str(i)} for i in range(10000)])
# -> Dataset(num_blocks=200, num_rows=10000, schema={col1: int64, col2: string})
ds.show(5)
# -> {'col1': 0, 'col2': '0'}
# -> {'col1': 1, 'col2': '1'}
# -> {'col1': 2, 'col2': '2'}
# -> {'col1': 3, 'col2': '3'}
# -> {'col1': 4, 'col2': '4'}
ds.schema()
# -> col1: int64
# -> col2: string
Datasets can be created from files on local disk or remote datasources such as S3.
Any filesystem `supported by pyarrow <http://arrow.apache.org/docs/python/generated/pyarrow.fs.FileSystem.html>`__
can be used to specify file locations:
.. code-block:: python
# Read a directory of files in remote storage.
ds = ray.data.read_csv("s3://bucket/path")
# Read multiple local files.
ds = ray.data.read_csv(["/path/to/file1", "/path/to/file2"])
# Read multiple directories.
ds = ray.data.read_csv(["s3://bucket/path1", "s3://bucket/path2"])
Finally, you can create a ``Dataset`` from existing data in the Ray object store or Ray-compatible distributed DataFrames:
.. code-block:: python
import pandas as pd
import dask.dataframe as dd
# Create a Dataset from a list of Pandas DataFrame objects.
pdf = pd.DataFrame({"one": [1, 2, 3], "two": ["a", "b", "c"]})
ds = ray.data.from_pandas([pdf])
# Create a Dataset from a Dask-on-Ray DataFrame.
dask_df = dd.from_pandas(pdf, npartitions=10)
ds = ray.data.from_dask(dask_df)