ray/rllib/examples/custom_experiment.py

56 lines
1.6 KiB
Python

"""Example of a custom experiment wrapped around an RLlib trainer."""
import argparse
import ray
from ray import tune
from ray.rllib.agents import ppo
parser = argparse.ArgumentParser()
parser.add_argument("--train-iterations", type=int, default=10)
def experiment(config):
iterations = config.pop("train-iterations")
train_agent = ppo.PPOTrainer(config=config, env="CartPole-v0")
checkpoint = None
train_results = {}
# Train
for i in range(iterations):
train_results = train_agent.train()
if i % 2 == 0 or i == iterations - 1:
checkpoint = train_agent.save(tune.get_trial_dir())
tune.report(**train_results)
train_agent.stop()
# Manual Eval
config["num_workers"] = 0
eval_agent = ppo.PPOTrainer(config=config, env="CartPole-v0")
eval_agent.restore(checkpoint)
env = eval_agent.workers.local_worker().env
obs = env.reset()
done = False
eval_results = {"eval_reward": 0, "eval_eps_length": 0}
while not done:
action = eval_agent.compute_single_action(obs)
next_obs, reward, done, info = env.step(action)
eval_results["eval_reward"] += reward
eval_results["eval_eps_length"] += 1
results = {**train_results, **eval_results}
tune.report(results)
if __name__ == "__main__":
args = parser.parse_args()
ray.init(num_cpus=3)
config = ppo.DEFAULT_CONFIG.copy()
config["train-iterations"] = args.train_iterations
config["env"] = "CartPole-v0"
tune.run(
experiment,
config=config,
resources_per_trial=ppo.PPOTrainer.default_resource_request(config))