mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
68 lines
2.4 KiB
Python
68 lines
2.4 KiB
Python
import pytest
|
|
import unittest
|
|
|
|
import ray
|
|
import ray.rllib.agents.dqn.apex as apex
|
|
from ray.rllib.utils.test_utils import check, check_compute_single_action, \
|
|
framework_iterator
|
|
|
|
|
|
class TestApexDQN(unittest.TestCase):
|
|
def setUp(self):
|
|
ray.init(num_cpus=4)
|
|
|
|
def tearDown(self):
|
|
ray.shutdown()
|
|
|
|
def test_apex_zero_workers(self):
|
|
config = apex.APEX_DEFAULT_CONFIG.copy()
|
|
config["num_workers"] = 0
|
|
config["learning_starts"] = 1000
|
|
config["prioritized_replay"] = True
|
|
config["timesteps_per_iteration"] = 100
|
|
config["min_iter_time_s"] = 1
|
|
config["optimizer"]["num_replay_buffer_shards"] = 1
|
|
for _ in framework_iterator(config):
|
|
trainer = apex.ApexTrainer(config=config, env="CartPole-v0")
|
|
trainer.train()
|
|
trainer.stop()
|
|
|
|
def test_apex_dqn_compilation_and_per_worker_epsilon_values(self):
|
|
"""Test whether an APEX-DQNTrainer can be built on all frameworks."""
|
|
config = apex.APEX_DEFAULT_CONFIG.copy()
|
|
config["num_workers"] = 3
|
|
config["learning_starts"] = 1000
|
|
config["prioritized_replay"] = True
|
|
config["timesteps_per_iteration"] = 100
|
|
config["min_iter_time_s"] = 1
|
|
config["optimizer"]["num_replay_buffer_shards"] = 1
|
|
|
|
for _ in framework_iterator(config):
|
|
plain_config = config.copy()
|
|
trainer = apex.ApexTrainer(config=plain_config, env="CartPole-v0")
|
|
|
|
# Test per-worker epsilon distribution.
|
|
infos = trainer.workers.foreach_policy(
|
|
lambda p, _: p.get_exploration_info())
|
|
expected = [0.4, 0.016190862, 0.00065536]
|
|
check([i["cur_epsilon"] for i in infos], [0.0] + expected)
|
|
|
|
check_compute_single_action(trainer)
|
|
|
|
# TODO(ekl) fix iterator metrics bugs w/multiple trainers.
|
|
# for i in range(1):
|
|
# results = trainer.train()
|
|
# print(results)
|
|
|
|
# Test again per-worker epsilon distribution
|
|
# (should not have changed).
|
|
infos = trainer.workers.foreach_policy(
|
|
lambda p, _: p.get_exploration_info())
|
|
check([i["cur_epsilon"] for i in infos], [0.0] + expected)
|
|
|
|
trainer.stop()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import sys
|
|
sys.exit(pytest.main(["-v", __file__]))
|