ray/rllib/agents/dqn/tests/test_apex_dqn.py
2020-07-11 22:06:35 +02:00

68 lines
2.4 KiB
Python

import pytest
import unittest
import ray
import ray.rllib.agents.dqn.apex as apex
from ray.rllib.utils.test_utils import check, check_compute_single_action, \
framework_iterator
class TestApexDQN(unittest.TestCase):
def setUp(self):
ray.init(num_cpus=4)
def tearDown(self):
ray.shutdown()
def test_apex_zero_workers(self):
config = apex.APEX_DEFAULT_CONFIG.copy()
config["num_workers"] = 0
config["learning_starts"] = 1000
config["prioritized_replay"] = True
config["timesteps_per_iteration"] = 100
config["min_iter_time_s"] = 1
config["optimizer"]["num_replay_buffer_shards"] = 1
for _ in framework_iterator(config):
trainer = apex.ApexTrainer(config=config, env="CartPole-v0")
trainer.train()
trainer.stop()
def test_apex_dqn_compilation_and_per_worker_epsilon_values(self):
"""Test whether an APEX-DQNTrainer can be built on all frameworks."""
config = apex.APEX_DEFAULT_CONFIG.copy()
config["num_workers"] = 3
config["learning_starts"] = 1000
config["prioritized_replay"] = True
config["timesteps_per_iteration"] = 100
config["min_iter_time_s"] = 1
config["optimizer"]["num_replay_buffer_shards"] = 1
for _ in framework_iterator(config):
plain_config = config.copy()
trainer = apex.ApexTrainer(config=plain_config, env="CartPole-v0")
# Test per-worker epsilon distribution.
infos = trainer.workers.foreach_policy(
lambda p, _: p.get_exploration_info())
expected = [0.4, 0.016190862, 0.00065536]
check([i["cur_epsilon"] for i in infos], [0.0] + expected)
check_compute_single_action(trainer)
# TODO(ekl) fix iterator metrics bugs w/multiple trainers.
# for i in range(1):
# results = trainer.train()
# print(results)
# Test again per-worker epsilon distribution
# (should not have changed).
infos = trainer.workers.foreach_policy(
lambda p, _: p.get_exploration_info())
check([i["cur_epsilon"] for i in infos], [0.0] + expected)
trainer.stop()
if __name__ == "__main__":
import sys
sys.exit(pytest.main(["-v", __file__]))