ray/rllib/agents/dqn/simple_q_tf_policy.py
Sven Mika 43043ee4d5
[RLlib] Tf2x preparation; part 2 (upgrading try_import_tf()). (#9136)
* WIP.

* Fixes.

* LINT.

* WIP.

* WIP.

* Fixes.

* Fixes.

* Fixes.

* Fixes.

* WIP.

* Fixes.

* Test

* Fix.

* Fixes and LINT.

* Fixes and LINT.

* LINT.
2020-06-30 10:13:20 +02:00

158 lines
5.6 KiB
Python

"""Basic example of a DQN policy without any optimizations."""
from gym.spaces import Discrete
import logging
import ray
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.models import ModelCatalog
from ray.rllib.models.torch.torch_action_dist import TorchCategorical
from ray.rllib.models.tf.tf_action_dist import Categorical
from ray.rllib.utils.annotations import override
from ray.rllib.utils.error import UnsupportedSpaceException
from ray.rllib.policy.tf_policy import TFPolicy
from ray.rllib.policy.tf_policy_template import build_tf_policy
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.tf_ops import huber_loss, make_tf_callable
tf1, tf, tfv = try_import_tf()
logger = logging.getLogger(__name__)
Q_SCOPE = "q_func"
Q_TARGET_SCOPE = "target_q_func"
class TargetNetworkMixin:
def __init__(self, obs_space, action_space, config):
@make_tf_callable(self.get_session())
def do_update():
# update_target_fn will be called periodically to copy Q network to
# target Q network
update_target_expr = []
assert len(self.q_func_vars) == len(self.target_q_func_vars), \
(self.q_func_vars, self.target_q_func_vars)
for var, var_target in zip(self.q_func_vars,
self.target_q_func_vars):
update_target_expr.append(var_target.assign(var))
logger.debug("Update target op {}".format(var_target))
return tf.group(*update_target_expr)
self.update_target = do_update
@override(TFPolicy)
def variables(self):
return self.q_func_vars + self.target_q_func_vars
def build_q_models(policy, obs_space, action_space, config):
if not isinstance(action_space, Discrete):
raise UnsupportedSpaceException(
"Action space {} is not supported for DQN.".format(action_space))
policy.q_model = ModelCatalog.get_model_v2(
obs_space=obs_space,
action_space=action_space,
num_outputs=action_space.n,
model_config=config["model"],
framework=config["framework"],
name=Q_SCOPE)
policy.target_q_model = ModelCatalog.get_model_v2(
obs_space=obs_space,
action_space=action_space,
num_outputs=action_space.n,
model_config=config["model"],
framework=config["framework"],
name=Q_TARGET_SCOPE)
policy.q_func_vars = policy.q_model.variables()
policy.target_q_func_vars = policy.target_q_model.variables()
return policy.q_model
def get_distribution_inputs_and_class(policy,
q_model,
obs_batch,
*,
explore=True,
is_training=True,
**kwargs):
q_vals = compute_q_values(policy, q_model, obs_batch, explore, is_training)
q_vals = q_vals[0] if isinstance(q_vals, tuple) else q_vals
policy.q_values = q_vals
return policy.q_values, (TorchCategorical
if policy.config["framework"] == "torch" else
Categorical), [] # state-outs
def build_q_losses(policy, model, dist_class, train_batch):
# q network evaluation
q_t = compute_q_values(
policy,
policy.q_model,
train_batch[SampleBatch.CUR_OBS],
explore=False)
# target q network evalution
q_tp1 = compute_q_values(
policy,
policy.target_q_model,
train_batch[SampleBatch.NEXT_OBS],
explore=False)
policy.target_q_func_vars = policy.target_q_model.variables()
# q scores for actions which we know were selected in the given state.
one_hot_selection = tf.one_hot(
tf.cast(train_batch[SampleBatch.ACTIONS], tf.int32),
policy.action_space.n)
q_t_selected = tf.reduce_sum(q_t * one_hot_selection, 1)
# compute estimate of best possible value starting from state at t + 1
dones = tf.cast(train_batch[SampleBatch.DONES], tf.float32)
q_tp1_best_one_hot_selection = tf.one_hot(
tf.argmax(q_tp1, 1), policy.action_space.n)
q_tp1_best = tf.reduce_sum(q_tp1 * q_tp1_best_one_hot_selection, 1)
q_tp1_best_masked = (1.0 - dones) * q_tp1_best
# compute RHS of bellman equation
q_t_selected_target = (train_batch[SampleBatch.REWARDS] +
policy.config["gamma"] * q_tp1_best_masked)
# compute the error (potentially clipped)
td_error = q_t_selected - tf.stop_gradient(q_t_selected_target)
loss = tf.reduce_mean(huber_loss(td_error))
# save TD error as an attribute for outside access
policy.td_error = td_error
return loss
def compute_q_values(policy, model, obs, explore, is_training=None):
model_out, _ = model({
SampleBatch.CUR_OBS: obs,
"is_training": is_training
if is_training is not None else policy._get_is_training_placeholder(),
}, [], None)
return model_out
def setup_late_mixins(policy, obs_space, action_space, config):
TargetNetworkMixin.__init__(policy, obs_space, action_space, config)
SimpleQTFPolicy = build_tf_policy(
name="SimpleQTFPolicy",
get_default_config=lambda: ray.rllib.agents.dqn.dqn.DEFAULT_CONFIG,
make_model=build_q_models,
action_distribution_fn=get_distribution_inputs_and_class,
loss_fn=build_q_losses,
extra_action_fetches_fn=lambda policy: {"q_values": policy.q_values},
extra_learn_fetches_fn=lambda policy: {"td_error": policy.td_error},
after_init=setup_late_mixins,
obs_include_prev_action_reward=False,
mixins=[TargetNetworkMixin])