mirror of
https://github.com/vale981/ray
synced 2025-03-05 10:01:43 -05:00
325 lines
11 KiB
ReStructuredText
325 lines
11 KiB
ReStructuredText
.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/ray_header_logo.png
|
|
|
|
.. image:: https://readthedocs.org/projects/ray/badge/?version=master
|
|
:target: http://docs.ray.io/en/master/?badge=master
|
|
|
|
.. image:: https://img.shields.io/badge/Ray-Join%20Slack-blue
|
|
:target: https://forms.gle/9TSdDYUgxYs8SA9e8
|
|
|
|
.. image:: https://img.shields.io/badge/Discuss-Ask%20Questions-blue
|
|
:target: https://discuss.ray.io/
|
|
|
|
.. image:: https://img.shields.io/twitter/follow/raydistributed.svg?style=social&logo=twitter
|
|
:target: https://twitter.com/raydistributed
|
|
|
|
|
|
|
|
|
|
|
**Ray provides a simple, universal API for building distributed applications.**
|
|
|
|
Ray is packaged with the following libraries for accelerating machine learning workloads:
|
|
|
|
- `Tune`_: Scalable Hyperparameter Tuning
|
|
- `RLlib`_: Scalable Reinforcement Learning
|
|
- `RaySGD <https://docs.ray.io/en/master/raysgd/raysgd.html>`__: Distributed Training Wrappers
|
|
- `Serve`_: Scalable and Programmable Serving
|
|
- `Datasets`_: Flexible Distributed Data Loading (beta)
|
|
- `Workflows`_: Fast, Durable Application Flows (alpha)
|
|
|
|
There are also many `community integrations <https://docs.ray.io/en/master/ray-libraries.html>`_ with Ray, including `Dask`_, `MARS`_, `Modin`_, `Horovod`_, `Hugging Face`_, `Scikit-learn`_, and others. Check out the `full list of Ray distributed libraries here <https://docs.ray.io/en/master/ray-libraries.html>`_.
|
|
|
|
Install Ray with: ``pip install ray``. For nightly wheels, see the
|
|
`Installation page <https://docs.ray.io/en/master/installation.html>`__.
|
|
|
|
.. _`Modin`: https://github.com/modin-project/modin
|
|
.. _`Hugging Face`: https://huggingface.co/transformers/main_classes/trainer.html#transformers.Trainer.hyperparameter_search
|
|
.. _`MARS`: https://docs.ray.io/en/master/mars-on-ray.html
|
|
.. _`Dask`: https://docs.ray.io/en/master/dask-on-ray.html
|
|
.. _`Horovod`: https://horovod.readthedocs.io/en/stable/ray_include.html
|
|
.. _`Scikit-learn`: joblib.html
|
|
.. _`Serve`: https://docs.ray.io/en/master/serve/index.html
|
|
.. _`Datasets`: https://docs.ray.io/en/master/data/dataset.html
|
|
.. _`Workflows`: https://docs.ray.io/en/master/workflows/concepts.html
|
|
|
|
|
|
Quick Start
|
|
-----------
|
|
|
|
Execute Python functions in parallel.
|
|
|
|
.. code-block:: python
|
|
|
|
import ray
|
|
ray.init()
|
|
|
|
@ray.remote
|
|
def f(x):
|
|
return x * x
|
|
|
|
futures = [f.remote(i) for i in range(4)]
|
|
print(ray.get(futures))
|
|
|
|
To use Ray's actor model:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
import ray
|
|
ray.init()
|
|
|
|
@ray.remote
|
|
class Counter(object):
|
|
def __init__(self):
|
|
self.n = 0
|
|
|
|
def increment(self):
|
|
self.n += 1
|
|
|
|
def read(self):
|
|
return self.n
|
|
|
|
counters = [Counter.remote() for i in range(4)]
|
|
[c.increment.remote() for c in counters]
|
|
futures = [c.read.remote() for c in counters]
|
|
print(ray.get(futures))
|
|
|
|
|
|
Ray programs can run on a single machine, and can also seamlessly scale to large clusters. To execute the above Ray script in the cloud, just download `this configuration file <https://github.com/ray-project/ray/blob/master/python/ray/autoscaler/aws/example-full.yaml>`__, and run:
|
|
|
|
``ray submit [CLUSTER.YAML] example.py --start``
|
|
|
|
Read more about `launching clusters <https://docs.ray.io/en/master/cluster/index.html>`_.
|
|
|
|
Tune Quick Start
|
|
----------------
|
|
|
|
.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/tune-wide.png
|
|
|
|
`Tune`_ is a library for hyperparameter tuning at any scale.
|
|
|
|
- Launch a multi-node distributed hyperparameter sweep in less than 10 lines of code.
|
|
- Supports any deep learning framework, including PyTorch, `PyTorch Lightning <https://github.com/williamFalcon/pytorch-lightning>`_, TensorFlow, and Keras.
|
|
- Visualize results with `TensorBoard <https://www.tensorflow.org/tensorboard>`__.
|
|
- Choose among scalable SOTA algorithms such as `Population Based Training (PBT)`_, `Vizier's Median Stopping Rule`_, `HyperBand/ASHA`_.
|
|
- Tune integrates with many optimization libraries such as `Facebook Ax <http://ax.dev>`_, `HyperOpt <https://github.com/hyperopt/hyperopt>`_, and `Bayesian Optimization <https://github.com/fmfn/BayesianOptimization>`_ and enables you to scale them transparently.
|
|
|
|
To run this example, you will need to install the following:
|
|
|
|
.. code-block:: bash
|
|
|
|
$ pip install "ray[tune]"
|
|
|
|
|
|
This example runs a parallel grid search to optimize an example objective function.
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
from ray import tune
|
|
|
|
|
|
def objective(step, alpha, beta):
|
|
return (0.1 + alpha * step / 100)**(-1) + beta * 0.1
|
|
|
|
|
|
def training_function(config):
|
|
# Hyperparameters
|
|
alpha, beta = config["alpha"], config["beta"]
|
|
for step in range(10):
|
|
# Iterative training function - can be any arbitrary training procedure.
|
|
intermediate_score = objective(step, alpha, beta)
|
|
# Feed the score back back to Tune.
|
|
tune.report(mean_loss=intermediate_score)
|
|
|
|
|
|
analysis = tune.run(
|
|
training_function,
|
|
config={
|
|
"alpha": tune.grid_search([0.001, 0.01, 0.1]),
|
|
"beta": tune.choice([1, 2, 3])
|
|
})
|
|
|
|
print("Best config: ", analysis.get_best_config(metric="mean_loss", mode="min"))
|
|
|
|
# Get a dataframe for analyzing trial results.
|
|
df = analysis.results_df
|
|
|
|
If TensorBoard is installed, automatically visualize all trial results:
|
|
|
|
.. code-block:: bash
|
|
|
|
tensorboard --logdir ~/ray_results
|
|
|
|
.. _`Tune`: https://docs.ray.io/en/master/tune.html
|
|
.. _`Population Based Training (PBT)`: https://docs.ray.io/en/master/tune-schedulers.html#population-based-training-pbt
|
|
.. _`Vizier's Median Stopping Rule`: https://docs.ray.io/en/master/tune-schedulers.html#median-stopping-rule
|
|
.. _`HyperBand/ASHA`: https://docs.ray.io/en/master/tune-schedulers.html#asynchronous-hyperband
|
|
|
|
RLlib Quick Start
|
|
-----------------
|
|
|
|
.. image:: https://github.com/ray-project/ray/raw/master/doc/source/images/rllib-wide.jpg
|
|
|
|
`RLlib`_ is an open-source library for reinforcement learning built on top of Ray that offers both high scalability and a unified API for a variety of applications.
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install tensorflow # or tensorflow-gpu
|
|
pip install "ray[rllib]"
|
|
|
|
.. code-block:: python
|
|
|
|
import gym
|
|
from gym.spaces import Discrete, Box
|
|
from ray import tune
|
|
|
|
class SimpleCorridor(gym.Env):
|
|
def __init__(self, config):
|
|
self.end_pos = config["corridor_length"]
|
|
self.cur_pos = 0
|
|
self.action_space = Discrete(2)
|
|
self.observation_space = Box(0.0, self.end_pos, shape=(1, ))
|
|
|
|
def reset(self):
|
|
self.cur_pos = 0
|
|
return [self.cur_pos]
|
|
|
|
def step(self, action):
|
|
if action == 0 and self.cur_pos > 0:
|
|
self.cur_pos -= 1
|
|
elif action == 1:
|
|
self.cur_pos += 1
|
|
done = self.cur_pos >= self.end_pos
|
|
return [self.cur_pos], 1 if done else 0, done, {}
|
|
|
|
tune.run(
|
|
"PPO",
|
|
config={
|
|
"env": SimpleCorridor,
|
|
"num_workers": 4,
|
|
"env_config": {"corridor_length": 5}})
|
|
|
|
.. _`RLlib`: https://docs.ray.io/en/master/rllib.html
|
|
|
|
|
|
Ray Serve Quick Start
|
|
---------------------
|
|
|
|
.. image:: https://raw.githubusercontent.com/ray-project/ray/master/doc/source/serve/logo.svg
|
|
:width: 400
|
|
|
|
`Ray Serve`_ is a scalable model-serving library built on Ray. It is:
|
|
|
|
- Framework Agnostic: Use the same toolkit to serve everything from deep
|
|
learning models built with frameworks like PyTorch or Tensorflow & Keras
|
|
to Scikit-Learn models or arbitrary business logic.
|
|
- Python First: Configure your model serving declaratively in pure Python,
|
|
without needing YAMLs or JSON configs.
|
|
- Performance Oriented: Turn on batching, pipelining, and GPU acceleration to
|
|
increase the throughput of your model.
|
|
- Composition Native: Allow you to create "model pipelines" by composing multiple
|
|
models together to drive a single prediction.
|
|
- Horizontally Scalable: Serve can linearly scale as you add more machines. Enable
|
|
your ML-powered service to handle growing traffic.
|
|
|
|
To run this example, you will need to install the following:
|
|
|
|
.. code-block:: bash
|
|
|
|
$ pip install scikit-learn
|
|
$ pip install "ray[serve]"
|
|
|
|
This example runs serves a scikit-learn gradient boosting classifier.
|
|
|
|
.. code-block:: python
|
|
|
|
import pickle
|
|
import requests
|
|
|
|
from sklearn.datasets import load_iris
|
|
from sklearn.ensemble import GradientBoostingClassifier
|
|
|
|
from ray import serve
|
|
|
|
serve.start()
|
|
|
|
# Train model.
|
|
iris_dataset = load_iris()
|
|
model = GradientBoostingClassifier()
|
|
model.fit(iris_dataset["data"], iris_dataset["target"])
|
|
|
|
@serve.deployment(route_prefix="/iris")
|
|
class BoostingModel:
|
|
def __init__(self, model):
|
|
self.model = model
|
|
self.label_list = iris_dataset["target_names"].tolist()
|
|
|
|
async def __call__(self, request):
|
|
payload = await request.json()["vector"]
|
|
print(f"Received flask request with data {payload}")
|
|
|
|
prediction = self.model.predict([payload])[0]
|
|
human_name = self.label_list[prediction]
|
|
return {"result": human_name}
|
|
|
|
|
|
# Deploy model.
|
|
BoostingModel.deploy(model)
|
|
|
|
# Query it!
|
|
sample_request_input = {"vector": [1.2, 1.0, 1.1, 0.9]}
|
|
response = requests.get("http://localhost:8000/iris", json=sample_request_input)
|
|
print(response.text)
|
|
# Result:
|
|
# {
|
|
# "result": "versicolor"
|
|
# }
|
|
|
|
|
|
.. _`Ray Serve`: https://docs.ray.io/en/master/serve/index.html
|
|
|
|
More Information
|
|
----------------
|
|
|
|
- `Documentation`_
|
|
- `Tutorial`_
|
|
- `Blog`_
|
|
- `Ray 1.0 Architecture whitepaper`_ **(new)**
|
|
- `Ray Design Patterns`_ **(new)**
|
|
- `RLlib paper`_
|
|
- `RLlib flow paper`_
|
|
- `Tune paper`_
|
|
|
|
*Older documents:*
|
|
|
|
- `Ray paper`_
|
|
- `Ray HotOS paper`_
|
|
|
|
.. _`Documentation`: http://docs.ray.io/en/master/index.html
|
|
.. _`Tutorial`: https://github.com/ray-project/tutorial
|
|
.. _`Blog`: https://medium.com/distributed-computing-with-ray
|
|
.. _`Ray 1.0 Architecture whitepaper`: https://docs.google.com/document/d/1lAy0Owi-vPz2jEqBSaHNQcy2IBSDEHyXNOQZlGuj93c/preview
|
|
.. _`Ray Design Patterns`: https://docs.google.com/document/d/167rnnDFIVRhHhK4mznEIemOtj63IOhtIPvSYaPgI4Fg/edit
|
|
.. _`Ray paper`: https://arxiv.org/abs/1712.05889
|
|
.. _`Ray HotOS paper`: https://arxiv.org/abs/1703.03924
|
|
.. _`RLlib paper`: https://arxiv.org/abs/1712.09381
|
|
.. _`RLlib flow paper`: https://arxiv.org/abs/2011.12719
|
|
.. _`Tune paper`: https://arxiv.org/abs/1807.05118
|
|
|
|
Getting Involved
|
|
----------------
|
|
|
|
- `Forum`_: For discussions about development, questions about usage, and feature requests.
|
|
- `GitHub Issues`_: For reporting bugs.
|
|
- `Twitter`_: Follow updates on Twitter.
|
|
- `Slack`_: Join our Slack channel.
|
|
- `Meetup Group`_: Join our meetup group.
|
|
- `StackOverflow`_: For questions about how to use Ray.
|
|
|
|
.. _`Forum`: https://discuss.ray.io/
|
|
.. _`GitHub Issues`: https://github.com/ray-project/ray/issues
|
|
.. _`StackOverflow`: https://stackoverflow.com/questions/tagged/ray
|
|
.. _`Meetup Group`: https://www.meetup.com/Bay-Area-Ray-Meetup/
|
|
.. _`Twitter`: https://twitter.com/raydistributed
|
|
.. _`Slack`: https://forms.gle/9TSdDYUgxYs8SA9e8
|
|
|