ray/rllib/agents/marwil/marwil.py

75 lines
2.6 KiB
Python

from ray.rllib.agents.trainer import with_common_config
from ray.rllib.agents.trainer_template import build_trainer
from ray.rllib.agents.marwil.marwil_tf_policy import MARWILTFPolicy
from ray.rllib.execution.replay_ops import SimpleReplayBuffer, Replay, \
StoreToReplayBuffer
from ray.rllib.execution.rollout_ops import ParallelRollouts, ConcatBatches
from ray.rllib.execution.concurrency_ops import Concurrently
from ray.rllib.execution.train_ops import TrainOneStep
from ray.rllib.execution.metric_ops import StandardMetricsReporting
# yapf: disable
# __sphinx_doc_begin__
DEFAULT_CONFIG = with_common_config({
# You should override this to point to an offline dataset (see agent.py).
"input": "sampler",
# Use importance sampling estimators for reward
"input_evaluation": ["is", "wis"],
# Scaling of advantages in exponential terms
# When beta is 0, MARWIL is reduced to imitation learning
"beta": 1.0,
# Balancing value estimation loss and policy optimization loss
"vf_coeff": 1.0,
# Whether to calculate cumulative rewards
"postprocess_inputs": True,
# Whether to rollout "complete_episodes" or "truncate_episodes"
"batch_mode": "complete_episodes",
# Learning rate for adam optimizer
"lr": 1e-4,
# Number of timesteps collected for each SGD round
"train_batch_size": 2000,
# Number of steps max to keep in the batch replay buffer
"replay_buffer_size": 100000,
# Number of steps to read before learning starts
"learning_starts": 0,
# === Parallelism ===
"num_workers": 0,
})
# __sphinx_doc_end__
# yapf: enable
def get_policy_class(config):
if config["framework"] == "torch":
from ray.rllib.agents.marwil.marwil_torch_policy import \
MARWILTorchPolicy
return MARWILTorchPolicy
else:
return MARWILTFPolicy
def execution_plan(workers, config):
rollouts = ParallelRollouts(workers, mode="bulk_sync")
replay_buffer = SimpleReplayBuffer(config["replay_buffer_size"])
store_op = rollouts \
.for_each(StoreToReplayBuffer(local_buffer=replay_buffer))
replay_op = Replay(local_buffer=replay_buffer) \
.combine(
ConcatBatches(min_batch_size=config["train_batch_size"])) \
.for_each(TrainOneStep(workers))
train_op = Concurrently(
[store_op, replay_op], mode="round_robin", output_indexes=[1])
return StandardMetricsReporting(train_op, workers, config)
MARWILTrainer = build_trainer(
name="MARWIL",
default_config=DEFAULT_CONFIG,
default_policy=MARWILTFPolicy,
get_policy_class=get_policy_class,
execution_plan=execution_plan)