mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
272 lines
11 KiB
Python
272 lines
11 KiB
Python
import logging
|
|
|
|
import ray
|
|
from ray.rllib.agents.a3c.a3c_tf_policy import A3CTFPolicy
|
|
from ray.rllib.agents.impala.vtrace_tf_policy import VTraceTFPolicy
|
|
from ray.rllib.agents.trainer import Trainer, with_common_config
|
|
from ray.rllib.agents.trainer_template import build_trainer
|
|
from ray.rllib.execution.learner_thread import LearnerThread
|
|
from ray.rllib.execution.multi_gpu_learner import TFMultiGPULearner
|
|
from ray.rllib.execution.tree_agg import gather_experiences_tree_aggregation
|
|
from ray.rllib.execution.common import STEPS_TRAINED_COUNTER, \
|
|
_get_global_vars, _get_shared_metrics
|
|
from ray.rllib.execution.replay_ops import MixInReplay
|
|
from ray.rllib.execution.rollout_ops import ParallelRollouts, ConcatBatches
|
|
from ray.rllib.execution.concurrency_ops import Concurrently, Enqueue, Dequeue
|
|
from ray.rllib.execution.metric_ops import StandardMetricsReporting
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.tune.trainable import Trainable
|
|
from ray.tune.resources import Resources
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# yapf: disable
|
|
# __sphinx_doc_begin__
|
|
DEFAULT_CONFIG = with_common_config({
|
|
# V-trace params (see vtrace_tf/torch.py).
|
|
"vtrace": True,
|
|
"vtrace_clip_rho_threshold": 1.0,
|
|
"vtrace_clip_pg_rho_threshold": 1.0,
|
|
# System params.
|
|
#
|
|
# == Overview of data flow in IMPALA ==
|
|
# 1. Policy evaluation in parallel across `num_workers` actors produces
|
|
# batches of size `rollout_fragment_length * num_envs_per_worker`.
|
|
# 2. If enabled, the replay buffer stores and produces batches of size
|
|
# `rollout_fragment_length * num_envs_per_worker`.
|
|
# 3. If enabled, the minibatch ring buffer stores and replays batches of
|
|
# size `train_batch_size` up to `num_sgd_iter` times per batch.
|
|
# 4. The learner thread executes data parallel SGD across `num_gpus` GPUs
|
|
# on batches of size `train_batch_size`.
|
|
#
|
|
"rollout_fragment_length": 50,
|
|
"train_batch_size": 500,
|
|
"min_iter_time_s": 10,
|
|
"num_workers": 2,
|
|
# number of GPUs the learner should use.
|
|
"num_gpus": 1,
|
|
# set >1 to load data into GPUs in parallel. Increases GPU memory usage
|
|
# proportionally with the number of buffers.
|
|
"num_data_loader_buffers": 1,
|
|
# how many train batches should be retained for minibatching. This conf
|
|
# only has an effect if `num_sgd_iter > 1`.
|
|
"minibatch_buffer_size": 1,
|
|
# number of passes to make over each train batch
|
|
"num_sgd_iter": 1,
|
|
# set >0 to enable experience replay. Saved samples will be replayed with
|
|
# a p:1 proportion to new data samples.
|
|
"replay_proportion": 0.0,
|
|
# number of sample batches to store for replay. The number of transitions
|
|
# saved total will be (replay_buffer_num_slots * rollout_fragment_length).
|
|
"replay_buffer_num_slots": 0,
|
|
# max queue size for train batches feeding into the learner
|
|
"learner_queue_size": 16,
|
|
# wait for train batches to be available in minibatch buffer queue
|
|
# this many seconds. This may need to be increased e.g. when training
|
|
# with a slow environment
|
|
"learner_queue_timeout": 300,
|
|
# level of queuing for sampling.
|
|
"max_sample_requests_in_flight_per_worker": 2,
|
|
# max number of workers to broadcast one set of weights to
|
|
"broadcast_interval": 1,
|
|
# use intermediate actors for multi-level aggregation. This can make sense
|
|
# if ingesting >2GB/s of samples, or if the data requires decompression.
|
|
"num_aggregation_workers": 0,
|
|
|
|
# Learning params.
|
|
"grad_clip": 40.0,
|
|
# either "adam" or "rmsprop"
|
|
"opt_type": "adam",
|
|
"lr": 0.0005,
|
|
"lr_schedule": None,
|
|
# rmsprop considered
|
|
"decay": 0.99,
|
|
"momentum": 0.0,
|
|
"epsilon": 0.1,
|
|
# balancing the three losses
|
|
"vf_loss_coeff": 0.5,
|
|
"entropy_coeff": 0.01,
|
|
"entropy_coeff_schedule": None,
|
|
|
|
# Callback for APPO to use to update KL, target network periodically.
|
|
# The input to the callback is the learner fetches dict.
|
|
"after_train_step": None,
|
|
})
|
|
# __sphinx_doc_end__
|
|
# yapf: enable
|
|
|
|
|
|
class OverrideDefaultResourceRequest:
|
|
@classmethod
|
|
@override(Trainable)
|
|
def default_resource_request(cls, config):
|
|
cf = dict(cls._default_config, **config)
|
|
Trainer._validate_config(cf)
|
|
return Resources(
|
|
cpu=cf["num_cpus_for_driver"],
|
|
gpu=cf["num_gpus"],
|
|
memory=cf["memory"],
|
|
object_store_memory=cf["object_store_memory"],
|
|
extra_cpu=cf["num_cpus_per_worker"] * cf["num_workers"] +
|
|
cf["num_aggregation_workers"],
|
|
extra_gpu=cf["num_gpus_per_worker"] * cf["num_workers"],
|
|
extra_memory=cf["memory_per_worker"] * cf["num_workers"],
|
|
extra_object_store_memory=cf["object_store_memory_per_worker"] *
|
|
cf["num_workers"])
|
|
|
|
|
|
def make_learner_thread(local_worker, config):
|
|
if config["num_gpus"] > 1 or config["num_data_loader_buffers"] > 1:
|
|
logger.info(
|
|
"Enabling multi-GPU mode, {} GPUs, {} parallel loaders".format(
|
|
config["num_gpus"], config["num_data_loader_buffers"]))
|
|
if config["num_data_loader_buffers"] < config["minibatch_buffer_size"]:
|
|
raise ValueError(
|
|
"In multi-gpu mode you must have at least as many "
|
|
"parallel data loader buffers as minibatch buffers: "
|
|
"{} vs {}".format(config["num_data_loader_buffers"],
|
|
config["minibatch_buffer_size"]))
|
|
learner_thread = TFMultiGPULearner(
|
|
local_worker,
|
|
num_gpus=config["num_gpus"],
|
|
lr=config["lr"],
|
|
train_batch_size=config["train_batch_size"],
|
|
num_data_loader_buffers=config["num_data_loader_buffers"],
|
|
minibatch_buffer_size=config["minibatch_buffer_size"],
|
|
num_sgd_iter=config["num_sgd_iter"],
|
|
learner_queue_size=config["learner_queue_size"],
|
|
learner_queue_timeout=config["learner_queue_timeout"])
|
|
else:
|
|
learner_thread = LearnerThread(
|
|
local_worker,
|
|
minibatch_buffer_size=config["minibatch_buffer_size"],
|
|
num_sgd_iter=config["num_sgd_iter"],
|
|
learner_queue_size=config["learner_queue_size"],
|
|
learner_queue_timeout=config["learner_queue_timeout"])
|
|
return learner_thread
|
|
|
|
|
|
def get_policy_class(config):
|
|
if config["framework"] == "torch":
|
|
if config["vtrace"]:
|
|
from ray.rllib.agents.impala.vtrace_torch_policy import \
|
|
VTraceTorchPolicy
|
|
return VTraceTorchPolicy
|
|
else:
|
|
from ray.rllib.agents.a3c.a3c_torch_policy import \
|
|
A3CTorchPolicy
|
|
return A3CTorchPolicy
|
|
else:
|
|
if config["vtrace"]:
|
|
return VTraceTFPolicy
|
|
else:
|
|
return A3CTFPolicy
|
|
|
|
|
|
def validate_config(config):
|
|
if config["entropy_coeff"] < 0.0:
|
|
raise DeprecationWarning("`entropy_coeff` must be >= 0.0!")
|
|
|
|
if config["vtrace"] and not config["in_evaluation"]:
|
|
if config["batch_mode"] != "truncate_episodes":
|
|
raise ValueError(
|
|
"Must use `batch_mode`=truncate_episodes if `vtrace` is True.")
|
|
|
|
|
|
# Update worker weights as they finish generating experiences.
|
|
class BroadcastUpdateLearnerWeights:
|
|
def __init__(self, learner_thread, workers, broadcast_interval):
|
|
self.learner_thread = learner_thread
|
|
self.steps_since_broadcast = 0
|
|
self.broadcast_interval = broadcast_interval
|
|
self.workers = workers
|
|
self.weights = workers.local_worker().get_weights()
|
|
|
|
def __call__(self, item):
|
|
actor, batch = item
|
|
self.steps_since_broadcast += 1
|
|
if (self.steps_since_broadcast >= self.broadcast_interval
|
|
and self.learner_thread.weights_updated):
|
|
self.weights = ray.put(self.workers.local_worker().get_weights())
|
|
self.steps_since_broadcast = 0
|
|
self.learner_thread.weights_updated = False
|
|
# Update metrics.
|
|
metrics = _get_shared_metrics()
|
|
metrics.counters["num_weight_broadcasts"] += 1
|
|
actor.set_weights.remote(self.weights, _get_global_vars())
|
|
|
|
|
|
def record_steps_trained(item):
|
|
count, fetches = item
|
|
metrics = _get_shared_metrics()
|
|
# Manually update the steps trained counter since the learner thread
|
|
# is executing outside the pipeline.
|
|
metrics.counters[STEPS_TRAINED_COUNTER] += count
|
|
return item
|
|
|
|
|
|
def gather_experiences_directly(workers, config):
|
|
rollouts = ParallelRollouts(
|
|
workers,
|
|
mode="async",
|
|
num_async=config["max_sample_requests_in_flight_per_worker"])
|
|
|
|
# Augment with replay and concat to desired train batch size.
|
|
train_batches = rollouts \
|
|
.for_each(lambda batch: batch.decompress_if_needed()) \
|
|
.for_each(MixInReplay(
|
|
num_slots=config["replay_buffer_num_slots"],
|
|
replay_proportion=config["replay_proportion"])) \
|
|
.flatten() \
|
|
.combine(
|
|
ConcatBatches(min_batch_size=config["train_batch_size"]))
|
|
|
|
return train_batches
|
|
|
|
|
|
def execution_plan(workers, config):
|
|
if config["num_aggregation_workers"] > 0:
|
|
train_batches = gather_experiences_tree_aggregation(workers, config)
|
|
else:
|
|
train_batches = gather_experiences_directly(workers, config)
|
|
|
|
# Start the learner thread.
|
|
learner_thread = make_learner_thread(workers.local_worker(), config)
|
|
learner_thread.start()
|
|
|
|
# This sub-flow sends experiences to the learner.
|
|
enqueue_op = train_batches \
|
|
.for_each(Enqueue(learner_thread.inqueue))
|
|
# Only need to update workers if there are remote workers.
|
|
if workers.remote_workers():
|
|
enqueue_op = enqueue_op.zip_with_source_actor() \
|
|
.for_each(BroadcastUpdateLearnerWeights(
|
|
learner_thread, workers,
|
|
broadcast_interval=config["broadcast_interval"]))
|
|
|
|
# This sub-flow updates the steps trained counter based on learner output.
|
|
dequeue_op = Dequeue(
|
|
learner_thread.outqueue, check=learner_thread.is_alive) \
|
|
.for_each(record_steps_trained)
|
|
|
|
merged_op = Concurrently(
|
|
[enqueue_op, dequeue_op], mode="async", output_indexes=[1])
|
|
|
|
# Callback for APPO to use to update KL, target network periodically.
|
|
# The input to the callback is the learner fetches dict.
|
|
if config["after_train_step"]:
|
|
merged_op = merged_op.for_each(lambda t: t[1]).for_each(
|
|
config["after_train_step"](workers, config))
|
|
|
|
return StandardMetricsReporting(merged_op, workers, config) \
|
|
.for_each(learner_thread.add_learner_metrics)
|
|
|
|
|
|
ImpalaTrainer = build_trainer(
|
|
name="IMPALA",
|
|
default_config=DEFAULT_CONFIG,
|
|
default_policy=VTraceTFPolicy,
|
|
validate_config=validate_config,
|
|
get_policy_class=get_policy_class,
|
|
execution_plan=execution_plan,
|
|
mixins=[OverrideDefaultResourceRequest])
|