mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00
57 lines
1.6 KiB
Python
57 lines
1.6 KiB
Python
from ray import tune
|
|
from ray.tune.registry import register_env
|
|
from ray.rllib.env.wrappers.pettingzoo_env import PettingZooEnv
|
|
from pettingzoo.sisl import waterworld_v0
|
|
|
|
# Based on code from github.com/parametersharingmadrl/parametersharingmadrl
|
|
|
|
if __name__ == "__main__":
|
|
# RDQN - Rainbow DQN
|
|
# ADQN - Apex DQN
|
|
def env_creator(args):
|
|
return PettingZooEnv(waterworld_v0.env())
|
|
|
|
env = env_creator({})
|
|
register_env("waterworld", env_creator)
|
|
|
|
obs_space = env.observation_space
|
|
act_space = env.action_space
|
|
|
|
policies = {"shared_policy": (None, obs_space, act_space, {})}
|
|
|
|
# for all methods
|
|
policy_ids = list(policies.keys())
|
|
|
|
tune.run(
|
|
"APEX_DDPG",
|
|
stop={"episodes_total": 60000},
|
|
checkpoint_freq=10,
|
|
config={
|
|
|
|
# Enviroment specific
|
|
"env": "waterworld",
|
|
|
|
# General
|
|
"num_gpus": 1,
|
|
"num_workers": 2,
|
|
"num_envs_per_worker": 8,
|
|
"learning_starts": 1000,
|
|
"buffer_size": int(1e5),
|
|
"compress_observations": True,
|
|
"rollout_fragment_length": 20,
|
|
"train_batch_size": 512,
|
|
"gamma": .99,
|
|
"n_step": 3,
|
|
"lr": .0001,
|
|
"prioritized_replay_alpha": 0.5,
|
|
"final_prioritized_replay_beta": 1.0,
|
|
"target_network_update_freq": 50000,
|
|
"timesteps_per_iteration": 25000,
|
|
|
|
# Method specific
|
|
"multiagent": {
|
|
"policies": policies,
|
|
"policy_mapping_fn": (lambda agent_id: "shared_policy"),
|
|
},
|
|
},
|
|
)
|