mirror of
https://github.com/vale981/ray
synced 2025-03-06 10:31:39 -05:00

* Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 * Reformatting * Fixing tests * Move atari-py install conditional to req.txt * migrate to new ale install method * Fix QMix, SAC, and MADDPA too. * Unpin gym and deprecate pendulum v0 Many tests in rllib depended on pendulum v0, however in gym 0.21, pendulum v0 was deprecated in favor of pendulum v1. This may change reward thresholds, so will have to potentially rerun all of the pendulum v1 benchmarks, or use another environment in favor. The same applies to frozen lake v0 and frozen lake v1 Lastly, all of the RLlib tests and have been moved to python 3.7 * Add gym installation based on python version. Pin python<= 3.6 to gym 0.19 due to install issues with atari roms in gym 0.20 Move atari-py install conditional to req.txt migrate to new ale install method Make parametric_actions_cartpole return float32 actions/obs Adding type conversions if obs/actions don't match space Add utils to make elements match gym space dtypes Co-authored-by: Jun Gong <jungong@anyscale.com> Co-authored-by: sven1977 <svenmika1977@gmail.com>
185 lines
5.9 KiB
Python
185 lines
5.9 KiB
Python
import numpy as np
|
|
import sys
|
|
import unittest
|
|
|
|
import ray
|
|
import ray.rllib.agents.a3c as a3c
|
|
import ray.rllib.agents.ddpg as ddpg
|
|
import ray.rllib.agents.ddpg.td3 as td3
|
|
import ray.rllib.agents.dqn as dqn
|
|
import ray.rllib.agents.impala as impala
|
|
import ray.rllib.agents.pg as pg
|
|
import ray.rllib.agents.ppo as ppo
|
|
import ray.rllib.agents.sac as sac
|
|
from ray.rllib.utils import check, framework_iterator
|
|
|
|
|
|
def do_test_explorations(run,
|
|
env,
|
|
config,
|
|
dummy_obs,
|
|
prev_a=None,
|
|
expected_mean_action=None):
|
|
"""Calls an Agent's `compute_actions` with different `explore` options."""
|
|
|
|
core_config = config.copy()
|
|
if run not in [a3c.A3CTrainer]:
|
|
core_config["num_workers"] = 0
|
|
|
|
# Test all frameworks.
|
|
for _ in framework_iterator(core_config):
|
|
print("Agent={}".format(run))
|
|
|
|
# Test for both the default Agent's exploration AND the `Random`
|
|
# exploration class.
|
|
for exploration in [None, "Random"]:
|
|
local_config = core_config.copy()
|
|
if exploration == "Random":
|
|
# TODO(sven): Random doesn't work for IMPALA yet.
|
|
if run is impala.ImpalaTrainer:
|
|
continue
|
|
local_config["exploration_config"] = {"type": "Random"}
|
|
print("exploration={}".format(exploration or "default"))
|
|
|
|
trainer = run(config=local_config, env=env)
|
|
|
|
# Make sure all actions drawn are the same, given same
|
|
# observations.
|
|
actions = []
|
|
for _ in range(25):
|
|
actions.append(
|
|
trainer.compute_single_action(
|
|
observation=dummy_obs,
|
|
explore=False,
|
|
prev_action=prev_a,
|
|
prev_reward=1.0 if prev_a is not None else None))
|
|
check(actions[-1], actions[0])
|
|
|
|
# Make sure actions drawn are different
|
|
# (around some mean value), given constant observations.
|
|
actions = []
|
|
for _ in range(500):
|
|
actions.append(
|
|
trainer.compute_single_action(
|
|
observation=dummy_obs,
|
|
explore=True,
|
|
prev_action=prev_a,
|
|
prev_reward=1.0 if prev_a is not None else None,
|
|
))
|
|
check(
|
|
np.mean(actions),
|
|
expected_mean_action
|
|
if expected_mean_action is not None else 0.5,
|
|
atol=0.4)
|
|
# Check that the stddev is not 0.0 (values differ).
|
|
check(np.std(actions), 0.0, false=True)
|
|
|
|
|
|
class TestExplorations(unittest.TestCase):
|
|
"""
|
|
Tests all Exploration components and the deterministic flag for
|
|
compute_action calls.
|
|
"""
|
|
|
|
@classmethod
|
|
def setUpClass(cls):
|
|
ray.init(num_cpus=4)
|
|
|
|
@classmethod
|
|
def tearDownClass(cls):
|
|
ray.shutdown()
|
|
|
|
def test_a2c(self):
|
|
do_test_explorations(
|
|
a3c.A2CTrainer,
|
|
"CartPole-v0",
|
|
a3c.a2c.A2C_DEFAULT_CONFIG,
|
|
np.array([0.0, 0.1, 0.0, 0.0]),
|
|
prev_a=np.array(1))
|
|
|
|
def test_a3c(self):
|
|
do_test_explorations(
|
|
a3c.A3CTrainer,
|
|
"CartPole-v0",
|
|
a3c.DEFAULT_CONFIG,
|
|
np.array([0.0, 0.1, 0.0, 0.0]),
|
|
prev_a=np.array(1))
|
|
|
|
def test_ddpg(self):
|
|
# Switch off random timesteps at beginning. We want to test actual
|
|
# GaussianNoise right away.
|
|
config = ddpg.DEFAULT_CONFIG.copy()
|
|
config["exploration_config"]["random_timesteps"] = 0
|
|
do_test_explorations(
|
|
ddpg.DDPGTrainer,
|
|
"Pendulum-v1",
|
|
config,
|
|
np.array([0.0, 0.1, 0.0]),
|
|
expected_mean_action=0.0)
|
|
|
|
def test_simple_dqn(self):
|
|
do_test_explorations(dqn.SimpleQTrainer, "CartPole-v0",
|
|
dqn.SIMPLE_Q_DEFAULT_CONFIG,
|
|
np.array([0.0, 0.1, 0.0, 0.0]))
|
|
|
|
def test_dqn(self):
|
|
do_test_explorations(dqn.DQNTrainer, "CartPole-v0", dqn.DEFAULT_CONFIG,
|
|
np.array([0.0, 0.1, 0.0, 0.0]))
|
|
|
|
def test_impala(self):
|
|
do_test_explorations(
|
|
impala.ImpalaTrainer,
|
|
"CartPole-v0",
|
|
dict(impala.DEFAULT_CONFIG.copy(), num_gpus=0),
|
|
np.array([0.0, 0.1, 0.0, 0.0]),
|
|
prev_a=np.array(0))
|
|
|
|
def test_pg(self):
|
|
do_test_explorations(
|
|
pg.PGTrainer,
|
|
"CartPole-v0",
|
|
pg.DEFAULT_CONFIG,
|
|
np.array([0.0, 0.1, 0.0, 0.0]),
|
|
prev_a=np.array(1))
|
|
|
|
def test_ppo_discr(self):
|
|
do_test_explorations(
|
|
ppo.PPOTrainer,
|
|
"CartPole-v0",
|
|
ppo.DEFAULT_CONFIG,
|
|
np.array([0.0, 0.1, 0.0, 0.0]),
|
|
prev_a=np.array(0))
|
|
|
|
def test_ppo_cont(self):
|
|
do_test_explorations(
|
|
ppo.PPOTrainer,
|
|
"Pendulum-v1",
|
|
ppo.DEFAULT_CONFIG,
|
|
np.array([0.0, 0.1, 0.0]),
|
|
prev_a=np.array([0.0]),
|
|
expected_mean_action=0.0)
|
|
|
|
def test_sac(self):
|
|
do_test_explorations(
|
|
sac.SACTrainer,
|
|
"Pendulum-v1",
|
|
sac.DEFAULT_CONFIG,
|
|
np.array([0.0, 0.1, 0.0]),
|
|
expected_mean_action=0.0)
|
|
|
|
def test_td3(self):
|
|
config = td3.TD3_DEFAULT_CONFIG.copy()
|
|
# Switch off random timesteps at beginning. We want to test actual
|
|
# GaussianNoise right away.
|
|
config["exploration_config"]["random_timesteps"] = 0
|
|
do_test_explorations(
|
|
td3.TD3Trainer,
|
|
"Pendulum-v1",
|
|
config,
|
|
np.array([0.0, 0.1, 0.0]),
|
|
expected_mean_action=0.0)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
sys.exit(pytest.main(["-v", __file__]))
|