ray/rllib/utils/exploration/tests/test_explorations.py
Avnish Narayan 026bf01071
[RLlib] Upgrade gym version to 0.21 and deprecate pendulum-v0. (#19535)
* Fix QMix, SAC, and MADDPA too.

* Unpin gym and deprecate pendulum v0

Many tests in rllib depended on pendulum v0,
however in gym 0.21, pendulum v0 was deprecated
in favor of pendulum v1. This may change reward
thresholds, so will have to potentially rerun
all of the pendulum v1 benchmarks, or use another
environment in favor. The same applies to frozen
lake v0 and frozen lake v1

Lastly, all of the RLlib tests and have
been moved to python 3.7

* Add gym installation based on python version.

Pin python<= 3.6 to gym 0.19 due to install
issues with atari roms in gym 0.20

* Reformatting

* Fixing tests

* Move atari-py install conditional to req.txt

* migrate to new ale install method

* Fix QMix, SAC, and MADDPA too.

* Unpin gym and deprecate pendulum v0

Many tests in rllib depended on pendulum v0,
however in gym 0.21, pendulum v0 was deprecated
in favor of pendulum v1. This may change reward
thresholds, so will have to potentially rerun
all of the pendulum v1 benchmarks, or use another
environment in favor. The same applies to frozen
lake v0 and frozen lake v1

Lastly, all of the RLlib tests and have
been moved to python 3.7
* Add gym installation based on python version.

Pin python<= 3.6 to gym 0.19 due to install
issues with atari roms in gym 0.20

Move atari-py install conditional to req.txt

migrate to new ale install method

Make parametric_actions_cartpole return float32 actions/obs

Adding type conversions if obs/actions don't match space

Add utils to make elements match gym space dtypes

Co-authored-by: Jun Gong <jungong@anyscale.com>
Co-authored-by: sven1977 <svenmika1977@gmail.com>
2021-11-03 16:24:00 +01:00

185 lines
5.9 KiB
Python

import numpy as np
import sys
import unittest
import ray
import ray.rllib.agents.a3c as a3c
import ray.rllib.agents.ddpg as ddpg
import ray.rllib.agents.ddpg.td3 as td3
import ray.rllib.agents.dqn as dqn
import ray.rllib.agents.impala as impala
import ray.rllib.agents.pg as pg
import ray.rllib.agents.ppo as ppo
import ray.rllib.agents.sac as sac
from ray.rllib.utils import check, framework_iterator
def do_test_explorations(run,
env,
config,
dummy_obs,
prev_a=None,
expected_mean_action=None):
"""Calls an Agent's `compute_actions` with different `explore` options."""
core_config = config.copy()
if run not in [a3c.A3CTrainer]:
core_config["num_workers"] = 0
# Test all frameworks.
for _ in framework_iterator(core_config):
print("Agent={}".format(run))
# Test for both the default Agent's exploration AND the `Random`
# exploration class.
for exploration in [None, "Random"]:
local_config = core_config.copy()
if exploration == "Random":
# TODO(sven): Random doesn't work for IMPALA yet.
if run is impala.ImpalaTrainer:
continue
local_config["exploration_config"] = {"type": "Random"}
print("exploration={}".format(exploration or "default"))
trainer = run(config=local_config, env=env)
# Make sure all actions drawn are the same, given same
# observations.
actions = []
for _ in range(25):
actions.append(
trainer.compute_single_action(
observation=dummy_obs,
explore=False,
prev_action=prev_a,
prev_reward=1.0 if prev_a is not None else None))
check(actions[-1], actions[0])
# Make sure actions drawn are different
# (around some mean value), given constant observations.
actions = []
for _ in range(500):
actions.append(
trainer.compute_single_action(
observation=dummy_obs,
explore=True,
prev_action=prev_a,
prev_reward=1.0 if prev_a is not None else None,
))
check(
np.mean(actions),
expected_mean_action
if expected_mean_action is not None else 0.5,
atol=0.4)
# Check that the stddev is not 0.0 (values differ).
check(np.std(actions), 0.0, false=True)
class TestExplorations(unittest.TestCase):
"""
Tests all Exploration components and the deterministic flag for
compute_action calls.
"""
@classmethod
def setUpClass(cls):
ray.init(num_cpus=4)
@classmethod
def tearDownClass(cls):
ray.shutdown()
def test_a2c(self):
do_test_explorations(
a3c.A2CTrainer,
"CartPole-v0",
a3c.a2c.A2C_DEFAULT_CONFIG,
np.array([0.0, 0.1, 0.0, 0.0]),
prev_a=np.array(1))
def test_a3c(self):
do_test_explorations(
a3c.A3CTrainer,
"CartPole-v0",
a3c.DEFAULT_CONFIG,
np.array([0.0, 0.1, 0.0, 0.0]),
prev_a=np.array(1))
def test_ddpg(self):
# Switch off random timesteps at beginning. We want to test actual
# GaussianNoise right away.
config = ddpg.DEFAULT_CONFIG.copy()
config["exploration_config"]["random_timesteps"] = 0
do_test_explorations(
ddpg.DDPGTrainer,
"Pendulum-v1",
config,
np.array([0.0, 0.1, 0.0]),
expected_mean_action=0.0)
def test_simple_dqn(self):
do_test_explorations(dqn.SimpleQTrainer, "CartPole-v0",
dqn.SIMPLE_Q_DEFAULT_CONFIG,
np.array([0.0, 0.1, 0.0, 0.0]))
def test_dqn(self):
do_test_explorations(dqn.DQNTrainer, "CartPole-v0", dqn.DEFAULT_CONFIG,
np.array([0.0, 0.1, 0.0, 0.0]))
def test_impala(self):
do_test_explorations(
impala.ImpalaTrainer,
"CartPole-v0",
dict(impala.DEFAULT_CONFIG.copy(), num_gpus=0),
np.array([0.0, 0.1, 0.0, 0.0]),
prev_a=np.array(0))
def test_pg(self):
do_test_explorations(
pg.PGTrainer,
"CartPole-v0",
pg.DEFAULT_CONFIG,
np.array([0.0, 0.1, 0.0, 0.0]),
prev_a=np.array(1))
def test_ppo_discr(self):
do_test_explorations(
ppo.PPOTrainer,
"CartPole-v0",
ppo.DEFAULT_CONFIG,
np.array([0.0, 0.1, 0.0, 0.0]),
prev_a=np.array(0))
def test_ppo_cont(self):
do_test_explorations(
ppo.PPOTrainer,
"Pendulum-v1",
ppo.DEFAULT_CONFIG,
np.array([0.0, 0.1, 0.0]),
prev_a=np.array([0.0]),
expected_mean_action=0.0)
def test_sac(self):
do_test_explorations(
sac.SACTrainer,
"Pendulum-v1",
sac.DEFAULT_CONFIG,
np.array([0.0, 0.1, 0.0]),
expected_mean_action=0.0)
def test_td3(self):
config = td3.TD3_DEFAULT_CONFIG.copy()
# Switch off random timesteps at beginning. We want to test actual
# GaussianNoise right away.
config["exploration_config"]["random_timesteps"] = 0
do_test_explorations(
td3.TD3Trainer,
"Pendulum-v1",
config,
np.array([0.0, 0.1, 0.0]),
expected_mean_action=0.0)
if __name__ == "__main__":
import pytest
sys.exit(pytest.main(["-v", __file__]))