ray/rllib/tests/test_supported_spaces.py
Avnish Narayan 026bf01071
[RLlib] Upgrade gym version to 0.21 and deprecate pendulum-v0. (#19535)
* Fix QMix, SAC, and MADDPA too.

* Unpin gym and deprecate pendulum v0

Many tests in rllib depended on pendulum v0,
however in gym 0.21, pendulum v0 was deprecated
in favor of pendulum v1. This may change reward
thresholds, so will have to potentially rerun
all of the pendulum v1 benchmarks, or use another
environment in favor. The same applies to frozen
lake v0 and frozen lake v1

Lastly, all of the RLlib tests and have
been moved to python 3.7

* Add gym installation based on python version.

Pin python<= 3.6 to gym 0.19 due to install
issues with atari roms in gym 0.20

* Reformatting

* Fixing tests

* Move atari-py install conditional to req.txt

* migrate to new ale install method

* Fix QMix, SAC, and MADDPA too.

* Unpin gym and deprecate pendulum v0

Many tests in rllib depended on pendulum v0,
however in gym 0.21, pendulum v0 was deprecated
in favor of pendulum v1. This may change reward
thresholds, so will have to potentially rerun
all of the pendulum v1 benchmarks, or use another
environment in favor. The same applies to frozen
lake v0 and frozen lake v1

Lastly, all of the RLlib tests and have
been moved to python 3.7
* Add gym installation based on python version.

Pin python<= 3.6 to gym 0.19 due to install
issues with atari roms in gym 0.20

Move atari-py install conditional to req.txt

migrate to new ale install method

Make parametric_actions_cartpole return float32 actions/obs

Adding type conversions if obs/actions don't match space

Add utils to make elements match gym space dtypes

Co-authored-by: Jun Gong <jungong@anyscale.com>
Co-authored-by: sven1977 <svenmika1977@gmail.com>
2021-11-03 16:24:00 +01:00

215 lines
7.2 KiB
Python

from gym.spaces import Box, Dict, Discrete, Tuple, MultiDiscrete
import numpy as np
import unittest
import ray
from ray.rllib.agents.registry import get_trainer_class
from ray.rllib.examples.env.random_env import RandomEnv
from ray.rllib.models.tf.fcnet import FullyConnectedNetwork as FCNetV2
from ray.rllib.models.tf.visionnet import VisionNetwork as VisionNetV2
from ray.rllib.models.torch.visionnet import VisionNetwork as TorchVisionNetV2
from ray.rllib.models.torch.fcnet import FullyConnectedNetwork as TorchFCNetV2
from ray.rllib.utils.error import UnsupportedSpaceException
from ray.rllib.utils.test_utils import framework_iterator
ACTION_SPACES_TO_TEST = {
"discrete": Discrete(5),
"vector": Box(-1.0, 1.0, (5, ), dtype=np.float32),
"vector2": Box(-1.0, 1.0, (5, ), dtype=np.float32),
"int_actions": Box(0, 3, (2, 3), dtype=np.int32),
"multidiscrete": MultiDiscrete([1, 2, 3, 4]),
"tuple": Tuple(
[Discrete(2),
Discrete(3),
Box(-1.0, 1.0, (5, ), dtype=np.float32)]),
"dict": Dict({
"action_choice": Discrete(3),
"parameters": Box(-1.0, 1.0, (1, ), dtype=np.float32),
"yet_another_nested_dict": Dict({
"a": Tuple([Discrete(2), Discrete(3)])
})
}),
}
OBSERVATION_SPACES_TO_TEST = {
"discrete": Discrete(5),
"vector": Box(-1.0, 1.0, (5, ), dtype=np.float32),
"vector2": Box(-1.0, 1.0, (5, 5), dtype=np.float32),
"image": Box(-1.0, 1.0, (84, 84, 1), dtype=np.float32),
"atari": Box(-1.0, 1.0, (210, 160, 3), dtype=np.float32),
"tuple": Tuple([Discrete(10),
Box(-1.0, 1.0, (5, ), dtype=np.float32)]),
"dict": Dict({
"task": Discrete(10),
"position": Box(-1.0, 1.0, (5, ), dtype=np.float32),
}),
}
def check_support(alg, config, train=True, check_bounds=False, tfe=False):
config["log_level"] = "ERROR"
config["train_batch_size"] = 10
config["rollout_fragment_length"] = 10
def _do_check(alg, config, a_name, o_name):
fw = config["framework"]
action_space = ACTION_SPACES_TO_TEST[a_name]
obs_space = OBSERVATION_SPACES_TO_TEST[o_name]
print("=== Testing {} (fw={}) A={} S={} ===".format(
alg, fw, action_space, obs_space))
config.update(
dict(
env_config=dict(
action_space=action_space,
observation_space=obs_space,
reward_space=Box(1.0, 1.0, shape=(), dtype=np.float32),
p_done=1.0,
check_action_bounds=check_bounds)))
stat = "ok"
try:
a = get_trainer_class(alg)(config=config, env=RandomEnv)
except ray.exceptions.RayActorError as e:
if isinstance(e.args[2], UnsupportedSpaceException):
stat = "unsupported"
else:
raise
except UnsupportedSpaceException:
stat = "unsupported"
else:
if alg not in ["DDPG", "ES", "ARS", "SAC"]:
if o_name in ["atari", "image"]:
if fw == "torch":
assert isinstance(a.get_policy().model,
TorchVisionNetV2)
else:
assert isinstance(a.get_policy().model, VisionNetV2)
elif o_name in ["vector", "vector2"]:
if fw == "torch":
assert isinstance(a.get_policy().model, TorchFCNetV2)
else:
assert isinstance(a.get_policy().model, FCNetV2)
if train:
a.train()
a.stop()
print(stat)
frameworks = ("tf", "torch")
if tfe:
frameworks += ("tf2", "tfe")
for _ in framework_iterator(config, frameworks=frameworks):
# Zip through action- and obs-spaces.
for a_name, o_name in zip(ACTION_SPACES_TO_TEST.keys(),
OBSERVATION_SPACES_TO_TEST.keys()):
_do_check(alg, config, a_name, o_name)
# Do the remaining obs spaces.
assert len(OBSERVATION_SPACES_TO_TEST) >= len(ACTION_SPACES_TO_TEST)
fixed_action_key = next(iter(ACTION_SPACES_TO_TEST.keys()))
for i, o_name in enumerate(OBSERVATION_SPACES_TO_TEST.keys()):
if i < len(ACTION_SPACES_TO_TEST):
continue
_do_check(alg, config, fixed_action_key, o_name)
class TestSupportedSpacesPG(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init(local_mode=True)
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_a3c(self):
config = {"num_workers": 1, "optimizer": {"grads_per_step": 1}}
check_support("A3C", config, check_bounds=True)
def test_appo(self):
check_support("APPO", {"num_gpus": 0, "vtrace": False}, train=False)
check_support("APPO", {"num_gpus": 0, "vtrace": True})
def test_impala(self):
check_support("IMPALA", {"num_gpus": 0})
def test_ppo(self):
config = {
"num_workers": 0,
"train_batch_size": 100,
"rollout_fragment_length": 10,
"num_sgd_iter": 1,
"sgd_minibatch_size": 10,
}
check_support("PPO", config, check_bounds=True, tfe=True)
def test_pg(self):
config = {"num_workers": 1, "optimizer": {}}
check_support("PG", config, train=False, check_bounds=True, tfe=True)
class TestSupportedSpacesOffPolicy(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init(num_cpus=4)
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_ddpg(self):
check_support(
"DDPG", {
"exploration_config": {
"ou_base_scale": 100.0
},
"timesteps_per_iteration": 1,
"buffer_size": 1000,
"use_state_preprocessor": True,
},
check_bounds=True)
def test_dqn(self):
config = {"timesteps_per_iteration": 1, "buffer_size": 1000}
check_support("DQN", config, tfe=True)
def test_sac(self):
check_support("SAC", {"buffer_size": 1000}, check_bounds=True)
class TestSupportedSpacesEvolutionAlgos(unittest.TestCase):
@classmethod
def setUpClass(cls) -> None:
ray.init(num_cpus=4)
@classmethod
def tearDownClass(cls) -> None:
ray.shutdown()
def test_ars(self):
check_support(
"ARS", {
"num_workers": 1,
"noise_size": 1500000,
"num_rollouts": 1,
"rollouts_used": 1
})
def test_es(self):
check_support(
"ES", {
"num_workers": 1,
"noise_size": 1500000,
"episodes_per_batch": 1,
"train_batch_size": 1
})
if __name__ == "__main__":
import pytest
import sys
# One can specify the specific TestCase class to run.
# None for all unittest.TestCase classes in this file.
class_ = sys.argv[1] if len(sys.argv) > 1 else None
sys.exit(
pytest.main(
["-v", __file__ + ("" if class_ is None else "::" + class_)]))