ray/rllib/agents/marwil/marwil.py
gjoliver 99a0088233
[RLlib] Unify the way we create local replay buffer for all agents (#19627)
* [RLlib] Unify the way we create and use LocalReplayBuffer for all the agents.

This change
1. Get rid of the try...except clause when we call execution_plan(),
   and get rid of the Deprecation warning as a result.
2. Fix the execution_plan() call in Trainer._try_recover() too.
3. Most importantly, makes it much easier to create and use different types
   of local replay buffers for all our agents.
   E.g., allow us to easily create a reservoir sampling replay buffer for
   APPO agent for Riot in the near future.
* Introduce explicit configuration for replay buffer types.
* Fix is_training key error.
* actually deprecate buffer_size field.
2021-10-26 20:56:02 +02:00

150 lines
5.7 KiB
Python

from typing import Optional, Type
from ray.rllib.agents.trainer import with_common_config
from ray.rllib.agents.trainer_template import build_trainer
from ray.rllib.agents.marwil.marwil_tf_policy import MARWILTFPolicy
from ray.rllib.execution.replay_ops import Replay, StoreToReplayBuffer
from ray.rllib.execution.replay_buffer import LocalReplayBuffer
from ray.rllib.execution.rollout_ops import ParallelRollouts, ConcatBatches
from ray.rllib.execution.concurrency_ops import Concurrently
from ray.rllib.execution.train_ops import TrainOneStep
from ray.rllib.execution.metric_ops import StandardMetricsReporting
from ray.rllib.utils.typing import TrainerConfigDict
from ray.rllib.evaluation.worker_set import WorkerSet
from ray.util.iter import LocalIterator
from ray.rllib.policy.policy import Policy
# yapf: disable
# __sphinx_doc_begin__
DEFAULT_CONFIG = with_common_config({
# === Input settings ===
# You should override this to point to an offline dataset
# (see trainer.py).
# The dataset may have an arbitrary number of timesteps
# (and even episodes) per line.
# However, each line must only contain consecutive timesteps in
# order for MARWIL to be able to calculate accumulated
# discounted returns. It is ok, though, to have multiple episodes in
# the same line.
"input": "sampler",
# Use importance sampling estimators for reward.
"input_evaluation": ["is", "wis"],
# === Postprocessing/accum., discounted return calculation ===
# If true, use the Generalized Advantage Estimator (GAE)
# with a value function, see https://arxiv.org/pdf/1506.02438.pdf in
# case an input line ends with a non-terminal timestep.
"use_gae": True,
# Whether to calculate cumulative rewards. Must be True.
"postprocess_inputs": True,
# === Training ===
# Scaling of advantages in exponential terms.
# When beta is 0.0, MARWIL is reduced to behavior cloning
# (imitation learning); see bc.py algorithm in this same directory.
"beta": 1.0,
# Balancing value estimation loss and policy optimization loss.
"vf_coeff": 1.0,
# If specified, clip the global norm of gradients by this amount.
"grad_clip": None,
# Learning rate for Adam optimizer.
"lr": 1e-4,
# The squared moving avg. advantage norm (c^2) update rate
# (1e-8 in the paper).
"moving_average_sqd_adv_norm_update_rate": 1e-8,
# Starting value for the squared moving avg. advantage norm (c^2).
"moving_average_sqd_adv_norm_start": 100.0,
# Number of (independent) timesteps pushed through the loss
# each SGD round.
"train_batch_size": 2000,
# Size of the replay buffer in (single and independent) timesteps.
# The buffer gets filled by reading from the input files line-by-line
# and adding all timesteps on one line at once. We then sample
# uniformly from the buffer (`train_batch_size` samples) for
# each training step.
"replay_buffer_size": 10000,
# Number of steps to read before learning starts.
"learning_starts": 0,
# === Parallelism ===
"num_workers": 0,
})
# __sphinx_doc_end__
# yapf: enable
def get_policy_class(config: TrainerConfigDict) -> Optional[Type[Policy]]:
"""Policy class picker function. Class is chosen based on DL-framework.
MARWIL/BC have both TF and Torch policy support.
Args:
config (TrainerConfigDict): The trainer's configuration dict.
Returns:
Optional[Type[Policy]]: The Policy class to use with DQNTrainer.
If None, use `default_policy` provided in build_trainer().
"""
if config["framework"] == "torch":
from ray.rllib.agents.marwil.marwil_torch_policy import \
MARWILTorchPolicy
return MARWILTorchPolicy
def execution_plan(workers: WorkerSet, config: TrainerConfigDict,
**kwargs) -> LocalIterator[dict]:
"""Execution plan of the MARWIL/BC algorithm. Defines the distributed
dataflow.
Args:
workers (WorkerSet): The WorkerSet for training the Polic(y/ies)
of the Trainer.
config (TrainerConfigDict): The trainer's configuration dict.
Returns:
LocalIterator[dict]: A local iterator over training metrics.
"""
assert len(kwargs) == 0, (
"Marwill execution_plan does NOT take any additional parameters")
rollouts = ParallelRollouts(workers, mode="bulk_sync")
replay_buffer = LocalReplayBuffer(
learning_starts=config["learning_starts"],
capacity=config["replay_buffer_size"],
replay_batch_size=config["train_batch_size"],
replay_sequence_length=1,
)
store_op = rollouts \
.for_each(StoreToReplayBuffer(local_buffer=replay_buffer))
replay_op = Replay(local_buffer=replay_buffer) \
.combine(
ConcatBatches(
min_batch_size=config["train_batch_size"],
count_steps_by=config["multiagent"]["count_steps_by"],
)) \
.for_each(TrainOneStep(workers))
train_op = Concurrently(
[store_op, replay_op], mode="round_robin", output_indexes=[1])
return StandardMetricsReporting(train_op, workers, config)
def validate_config(config: TrainerConfigDict) -> None:
"""Checks and updates the config based on settings."""
if config["num_gpus"] > 1:
raise ValueError("`num_gpus` > 1 not yet supported for MARWIL!")
if config["postprocess_inputs"] is False and config["beta"] > 0.0:
raise ValueError("`postprocess_inputs` must be True for MARWIL (to "
"calculate accum., discounted returns)!")
MARWILTrainer = build_trainer(
name="MARWIL",
default_config=DEFAULT_CONFIG,
default_policy=MARWILTFPolicy,
get_policy_class=get_policy_class,
validate_config=validate_config,
execution_plan=execution_plan)