ray/rllib/agents/dqn/tests/test_apex.py

46 lines
1.5 KiB
Python

import numpy as np
import pytest
import unittest
import ray
import ray.rllib.agents.dqn.apex as apex
from ray.rllib.utils.test_utils import framework_iterator
class TestApex(unittest.TestCase):
def setUp(self):
ray.init(num_cpus=4)
def tearDown(self):
ray.shutdown()
def test_apex_compilation_and_per_worker_epsilon_values(self):
"""Test whether an APEX-DQNTrainer can be built on all frameworks."""
config = apex.APEX_DEFAULT_CONFIG.copy()
config["num_workers"] = 3
config["prioritized_replay"] = True
config["timesteps_per_iteration"] = 100
config["min_iter_time_s"] = 1
config["optimizer"]["num_replay_buffer_shards"] = 1
for _ in framework_iterator(config, ("torch", "tf", "eager")):
plain_config = config.copy()
trainer = apex.ApexTrainer(config=plain_config, env="CartPole-v0")
# Test per-worker epsilon distribution.
infos = trainer.workers.foreach_policy(
lambda p, _: p.get_exploration_info())
eps = [i["cur_epsilon"] for i in infos]
assert np.allclose(eps, [0.0, 0.4, 0.016190862, 0.00065536])
# TODO(ekl) fix iterator metrics bugs w/multiple trainers.
# for i in range(1):
# results = trainer.train()
# print(results)
trainer.stop()
if __name__ == "__main__":
import sys
sys.exit(pytest.main(["-v", __file__]))