ray/rllib/examples/trajectory_view_api.py
xwjiang2010 fcf897ee72
[air] update rllib example to use Tuner API. (#26987)
update rllib example to use Tuner API.

Signed-off-by: xwjiang2010 <xwjiang2010@gmail.com>
2022-07-27 12:12:59 +01:00

130 lines
3.9 KiB
Python

import argparse
import numpy as np
import ray
from ray.rllib.algorithms.ppo import PPO
from ray.rllib.examples.env.stateless_cartpole import StatelessCartPole
from ray.rllib.examples.models.trajectory_view_utilizing_models import (
FrameStackingCartPoleModel,
TorchFrameStackingCartPoleModel,
)
from ray.rllib.models.catalog import ModelCatalog
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.test_utils import check_learning_achieved
from ray import air, tune
tf1, tf, tfv = try_import_tf()
parser = argparse.ArgumentParser()
parser.add_argument(
"--run", type=str, default="PPO", help="The RLlib-registered algorithm to use."
)
parser.add_argument(
"--framework",
choices=["tf", "tf2", "tfe", "torch"],
default="tf",
help="The DL framework specifier.",
)
parser.add_argument(
"--as-test",
action="store_true",
help="Whether this script should be run as a test: --stop-reward must "
"be achieved within --stop-timesteps AND --stop-iters.",
)
parser.add_argument(
"--stop-iters", type=int, default=50, help="Number of iterations to train."
)
parser.add_argument(
"--stop-timesteps", type=int, default=200000, help="Number of timesteps to train."
)
parser.add_argument(
"--stop-reward", type=float, default=150.0, help="Reward at which we stop training."
)
if __name__ == "__main__":
args = parser.parse_args()
ray.init(num_cpus=3)
num_frames = 16
ModelCatalog.register_custom_model(
"frame_stack_model",
FrameStackingCartPoleModel
if args.framework != "torch"
else TorchFrameStackingCartPoleModel,
)
config = {
"env": StatelessCartPole,
"model": {
"vf_share_layers": True,
"custom_model": "frame_stack_model",
"custom_model_config": {
"num_frames": num_frames,
},
# To compare against a simple LSTM:
# "use_lstm": True,
# "lstm_use_prev_action": True,
# "lstm_use_prev_reward": True,
# To compare against a simple attention net:
# "use_attention": True,
# "attention_use_n_prev_actions": 1,
# "attention_use_n_prev_rewards": 1,
},
"num_sgd_iter": 5,
"vf_loss_coeff": 0.0001,
"framework": args.framework,
}
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
results = tune.Tuner(
args.run,
param_space=config,
run_config=air.RunConfig(
stop=stop,
verbose=2,
checkpoint_config=air.CheckpointConfig(checkpoint_at_end=True),
),
).fit()
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ckpt = results.get_best_result(metric="episode_reward_mean", mode="max").checkpoint
algo = PPO(config)
with ckpt.as_directory() as ckpt_dir:
algo.restore(ckpt_dir)
# Inference loop.
env = StatelessCartPole()
# Run manual inference loop for n episodes.
for _ in range(10):
episode_reward = 0.0
reward = 0.0
action = 0
done = False
obs = env.reset()
while not done:
# Create a dummy action using the same observation n times,
# as well as dummy prev-n-actions and prev-n-rewards.
action, state, logits = algo.compute_single_action(
input_dict={
"obs": obs,
"prev_n_obs": np.stack([obs for _ in range(num_frames)]),
"prev_n_actions": np.stack([0 for _ in range(num_frames)]),
"prev_n_rewards": np.stack([1.0 for _ in range(num_frames)]),
},
full_fetch=True,
)
obs, reward, done, info = env.step(action)
episode_reward += reward
print(f"Episode reward={episode_reward}")
ray.shutdown()