mirror of
https://github.com/vale981/ray
synced 2025-03-05 18:11:42 -05:00

update rllib example to use Tuner API. Signed-off-by: xwjiang2010 <xwjiang2010@gmail.com>
150 lines
4.7 KiB
Python
150 lines
4.7 KiB
Python
"""An example of implementing a centralized critic with ObservationFunction.
|
|
|
|
The advantage of this approach is that it's very simple and you don't have to
|
|
change the algorithm at all -- just use callbacks and a custom model.
|
|
However, it is a bit less principled in that you have to change the agent
|
|
observation spaces to include data that is only used at train time.
|
|
|
|
See also: centralized_critic.py for an alternative approach that instead
|
|
modifies the policy to add a centralized value function.
|
|
"""
|
|
|
|
import numpy as np
|
|
from gym.spaces import Dict, Discrete
|
|
import argparse
|
|
import os
|
|
|
|
from ray import air, tune
|
|
from ray.rllib.algorithms.callbacks import DefaultCallbacks
|
|
from ray.rllib.examples.models.centralized_critic_models import (
|
|
YetAnotherCentralizedCriticModel,
|
|
YetAnotherTorchCentralizedCriticModel,
|
|
)
|
|
from ray.rllib.examples.env.two_step_game import TwoStepGame
|
|
from ray.rllib.models import ModelCatalog
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.",
|
|
)
|
|
parser.add_argument(
|
|
"--as-test",
|
|
action="store_true",
|
|
help="Whether this script should be run as a test: --stop-reward must "
|
|
"be achieved within --stop-timesteps AND --stop-iters.",
|
|
)
|
|
parser.add_argument(
|
|
"--stop-iters", type=int, default=100, help="Number of iterations to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-timesteps", type=int, default=100000, help="Number of timesteps to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-reward", type=float, default=7.99, help="Reward at which we stop training."
|
|
)
|
|
|
|
|
|
class FillInActions(DefaultCallbacks):
|
|
"""Fills in the opponent actions info in the training batches."""
|
|
|
|
def on_postprocess_trajectory(
|
|
self,
|
|
worker,
|
|
episode,
|
|
agent_id,
|
|
policy_id,
|
|
policies,
|
|
postprocessed_batch,
|
|
original_batches,
|
|
**kwargs
|
|
):
|
|
to_update = postprocessed_batch[SampleBatch.CUR_OBS]
|
|
other_id = 1 if agent_id == 0 else 0
|
|
action_encoder = ModelCatalog.get_preprocessor_for_space(Discrete(2))
|
|
|
|
# set the opponent actions into the observation
|
|
_, opponent_batch = original_batches[other_id]
|
|
opponent_actions = np.array(
|
|
[action_encoder.transform(a) for a in opponent_batch[SampleBatch.ACTIONS]]
|
|
)
|
|
to_update[:, -2:] = opponent_actions
|
|
|
|
|
|
def central_critic_observer(agent_obs, **kw):
|
|
"""Rewrites the agent obs to include opponent data for training."""
|
|
|
|
new_obs = {
|
|
0: {
|
|
"own_obs": agent_obs[0],
|
|
"opponent_obs": agent_obs[1],
|
|
"opponent_action": 0, # filled in by FillInActions
|
|
},
|
|
1: {
|
|
"own_obs": agent_obs[1],
|
|
"opponent_obs": agent_obs[0],
|
|
"opponent_action": 0, # filled in by FillInActions
|
|
},
|
|
}
|
|
return new_obs
|
|
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
|
|
ModelCatalog.register_custom_model(
|
|
"cc_model",
|
|
YetAnotherTorchCentralizedCriticModel
|
|
if args.framework == "torch"
|
|
else YetAnotherCentralizedCriticModel,
|
|
)
|
|
|
|
action_space = Discrete(2)
|
|
observer_space = Dict(
|
|
{
|
|
"own_obs": Discrete(6),
|
|
# These two fields are filled in by the CentralCriticObserver, and are
|
|
# not used for inference, only for training.
|
|
"opponent_obs": Discrete(6),
|
|
"opponent_action": Discrete(2),
|
|
}
|
|
)
|
|
|
|
config = {
|
|
"env": TwoStepGame,
|
|
"batch_mode": "complete_episodes",
|
|
"callbacks": FillInActions,
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
"num_workers": 0,
|
|
"multiagent": {
|
|
"policies": {
|
|
"pol1": (None, observer_space, action_space, {}),
|
|
"pol2": (None, observer_space, action_space, {}),
|
|
},
|
|
"policy_mapping_fn": (lambda aid, **kwargs: "pol1" if aid == 0 else "pol2"),
|
|
"observation_fn": central_critic_observer,
|
|
},
|
|
"model": {
|
|
"custom_model": "cc_model",
|
|
},
|
|
"framework": args.framework,
|
|
}
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"episode_reward_mean": args.stop_reward,
|
|
}
|
|
|
|
tuner = tune.Tuner(
|
|
"PPO", param_space=config, run_config=air.RunConfig(stop=stop, verbose=1)
|
|
)
|
|
results = tuner.fit()
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|