ray/rllib/utils/debug.py

122 lines
3.8 KiB
Python

import numpy as np
import os
import pprint
import random
from typing import Any, Mapping, Optional
from ray.rllib.policy.sample_batch import SampleBatch, MultiAgentBatch
from ray.rllib.utils.framework import try_import_tf, try_import_torch
_printer = pprint.PrettyPrinter(indent=2, width=60)
def summarize(obj: Any) -> Any:
"""Return a pretty-formatted string for an object.
This has special handling for pretty-formatting of commonly used data types
in RLlib, such as SampleBatch, numpy arrays, etc.
Args:
obj: The object to format.
Returns:
The summarized object.
"""
return _printer.pformat(_summarize(obj))
def _summarize(obj):
if isinstance(obj, Mapping):
return {k: _summarize(v) for k, v in obj.items()}
elif hasattr(obj, "_asdict"):
return {
"type": obj.__class__.__name__,
"data": _summarize(obj._asdict()),
}
elif isinstance(obj, list):
return [_summarize(x) for x in obj]
elif isinstance(obj, tuple):
return tuple(_summarize(x) for x in obj)
elif isinstance(obj, np.ndarray):
if obj.size == 0:
return _StringValue("np.ndarray({}, dtype={})".format(
obj.shape, obj.dtype))
elif obj.dtype == object or obj.dtype.type is np.str_:
return _StringValue("np.ndarray({}, dtype={}, head={})".format(
obj.shape, obj.dtype, _summarize(obj[0])))
else:
return _StringValue(
"np.ndarray({}, dtype={}, min={}, max={}, mean={})".format(
obj.shape, obj.dtype, round(float(np.min(obj)), 3),
round(float(np.max(obj)), 3), round(
float(np.mean(obj)), 3)))
elif isinstance(obj, MultiAgentBatch):
return {
"type": "MultiAgentBatch",
"policy_batches": _summarize(obj.policy_batches),
"count": obj.count,
}
elif isinstance(obj, SampleBatch):
return {
"type": "SampleBatch",
"data": {k: _summarize(v)
for k, v in obj.items()},
}
else:
return obj
class _StringValue:
def __init__(self, value):
self.value = value
def __repr__(self):
return self.value
def update_global_seed_if_necessary(framework: Optional[str] = None,
seed: Optional[int] = None) -> None:
"""Seed global modules such as random, numpy, torch, or tf.
This is useful for debugging and testing.
Args:
framework: The framework specifier (may be None).
seed: An optional int seed. If None, will not do
anything.
"""
if seed is None:
return
# Python random module.
random.seed(seed)
# Numpy.
np.random.seed(seed)
# Torch.
if framework == "torch":
torch, _ = try_import_torch()
torch.manual_seed(seed)
# See https://github.com/pytorch/pytorch/issues/47672.
cuda_version = torch.version.cuda
if cuda_version is not None and float(torch.version.cuda) >= 10.2:
os.environ["CUBLAS_WORKSPACE_CONFIG"] = "4096:8"
else:
from distutils.version import LooseVersion
if LooseVersion(torch.__version__) >= LooseVersion("1.8.0"):
# Not all Operations support this.
torch.use_deterministic_algorithms(True)
else:
torch.set_deterministic(True)
# This is only for Convolution no problem.
torch.backends.cudnn.deterministic = True
elif framework == "tf2" or framework == "tfe":
tf1, tf, _ = try_import_tf()
# Tf2.x.
if framework == "tf2":
tf.random.set_seed(seed)
# Tf-eager.
elif framework == "tfe":
tf1.set_random_seed(seed)