mirror of
https://github.com/vale981/ray
synced 2025-03-06 02:21:39 -05:00
165 lines
5.6 KiB
Python
165 lines
5.6 KiB
Python
from typing import Dict, List, Optional, Type, Union
|
|
|
|
import ray
|
|
from ray.rllib.evaluation.episode import Episode
|
|
from ray.rllib.evaluation.postprocessing import (
|
|
compute_gae_for_sample_batch,
|
|
Postprocessing,
|
|
)
|
|
from ray.rllib.models.modelv2 import ModelV2
|
|
from ray.rllib.models.torch.torch_action_dist import TorchDistributionWrapper
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.policy.torch_mixins import (
|
|
EntropyCoeffSchedule,
|
|
LearningRateSchedule,
|
|
ValueNetworkMixin,
|
|
)
|
|
from ray.rllib.policy.torch_policy_v2 import TorchPolicyV2
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.rllib.utils.deprecation import Deprecated
|
|
from ray.rllib.utils.framework import try_import_torch
|
|
from ray.rllib.utils.numpy import convert_to_numpy
|
|
from ray.rllib.utils.torch_utils import apply_grad_clipping, sequence_mask
|
|
from ray.rllib.utils.typing import AgentID, TensorType
|
|
|
|
torch, nn = try_import_torch()
|
|
|
|
|
|
class A3CTorchPolicy(
|
|
ValueNetworkMixin, LearningRateSchedule, EntropyCoeffSchedule, TorchPolicyV2
|
|
):
|
|
"""PyTorch Policy class used with A3C."""
|
|
|
|
def __init__(self, observation_space, action_space, config):
|
|
config = dict(ray.rllib.algorithms.a3c.a3c.A3CConfig().to_dict(), **config)
|
|
|
|
TorchPolicyV2.__init__(
|
|
self,
|
|
observation_space,
|
|
action_space,
|
|
config,
|
|
max_seq_len=config["model"]["max_seq_len"],
|
|
)
|
|
ValueNetworkMixin.__init__(self, config)
|
|
LearningRateSchedule.__init__(self, config["lr"], config["lr_schedule"])
|
|
EntropyCoeffSchedule.__init__(
|
|
self, config["entropy_coeff"], config["entropy_coeff_schedule"]
|
|
)
|
|
|
|
# TODO: Don't require users to call this manually.
|
|
self._initialize_loss_from_dummy_batch()
|
|
|
|
@override(TorchPolicyV2)
|
|
def loss(
|
|
self,
|
|
model: ModelV2,
|
|
dist_class: Type[TorchDistributionWrapper],
|
|
train_batch: SampleBatch,
|
|
) -> Union[TensorType, List[TensorType]]:
|
|
"""Constructs the loss function.
|
|
|
|
Args:
|
|
model: The Model to calculate the loss for.
|
|
dist_class: The action distr. class.
|
|
train_batch: The training data.
|
|
|
|
Returns:
|
|
The A3C loss tensor given the input batch.
|
|
"""
|
|
logits, _ = model(train_batch)
|
|
values = model.value_function()
|
|
|
|
if self.is_recurrent():
|
|
B = len(train_batch[SampleBatch.SEQ_LENS])
|
|
max_seq_len = logits.shape[0] // B
|
|
mask_orig = sequence_mask(train_batch[SampleBatch.SEQ_LENS], max_seq_len)
|
|
valid_mask = torch.reshape(mask_orig, [-1])
|
|
else:
|
|
valid_mask = torch.ones_like(values, dtype=torch.bool)
|
|
|
|
dist = dist_class(logits, model)
|
|
log_probs = dist.logp(train_batch[SampleBatch.ACTIONS]).reshape(-1)
|
|
pi_err = -torch.sum(
|
|
torch.masked_select(
|
|
log_probs * train_batch[Postprocessing.ADVANTAGES], valid_mask
|
|
)
|
|
)
|
|
|
|
# Compute a value function loss.
|
|
if self.config["use_critic"]:
|
|
value_err = 0.5 * torch.sum(
|
|
torch.pow(
|
|
torch.masked_select(
|
|
values.reshape(-1) - train_batch[Postprocessing.VALUE_TARGETS],
|
|
valid_mask,
|
|
),
|
|
2.0,
|
|
)
|
|
)
|
|
# Ignore the value function.
|
|
else:
|
|
value_err = 0.0
|
|
|
|
entropy = torch.sum(torch.masked_select(dist.entropy(), valid_mask))
|
|
|
|
total_loss = (
|
|
pi_err
|
|
+ value_err * self.config["vf_loss_coeff"]
|
|
- entropy * self.entropy_coeff
|
|
)
|
|
|
|
# Store values for stats function in model (tower), such that for
|
|
# multi-GPU, we do not override them during the parallel loss phase.
|
|
model.tower_stats["entropy"] = entropy
|
|
model.tower_stats["pi_err"] = pi_err
|
|
model.tower_stats["value_err"] = value_err
|
|
|
|
return total_loss
|
|
|
|
@override(TorchPolicyV2)
|
|
def optimizer(
|
|
self,
|
|
) -> Union[List["torch.optim.Optimizer"], "torch.optim.Optimizer"]:
|
|
"""Returns a torch optimizer (Adam) for A3C."""
|
|
return torch.optim.Adam(self.model.parameters(), lr=self.config["lr"])
|
|
|
|
@override(TorchPolicyV2)
|
|
def stats_fn(self, train_batch: SampleBatch) -> Dict[str, TensorType]:
|
|
return convert_to_numpy(
|
|
{
|
|
"cur_lr": self.cur_lr,
|
|
"entropy_coeff": self.entropy_coeff,
|
|
"policy_entropy": torch.mean(
|
|
torch.stack(self.get_tower_stats("entropy"))
|
|
),
|
|
"policy_loss": torch.mean(torch.stack(self.get_tower_stats("pi_err"))),
|
|
"vf_loss": torch.mean(torch.stack(self.get_tower_stats("value_err"))),
|
|
}
|
|
)
|
|
|
|
@override(TorchPolicyV2)
|
|
def postprocess_trajectory(
|
|
self,
|
|
sample_batch: SampleBatch,
|
|
other_agent_batches: Optional[Dict[AgentID, SampleBatch]] = None,
|
|
episode: Optional[Episode] = None,
|
|
):
|
|
sample_batch = super().postprocess_trajectory(sample_batch)
|
|
return compute_gae_for_sample_batch(
|
|
self, sample_batch, other_agent_batches, episode
|
|
)
|
|
|
|
@override(TorchPolicyV2)
|
|
def extra_grad_process(
|
|
self, optimizer: "torch.optim.Optimizer", loss: TensorType
|
|
) -> Dict[str, TensorType]:
|
|
return apply_grad_clipping(self, optimizer, loss)
|
|
|
|
|
|
@Deprecated(
|
|
old="rllib.algorithms.a3c.a3c_torch_policy.add_advantages",
|
|
new="rllib.evaluation.postprocessing.compute_gae_for_sample_batch",
|
|
error=True,
|
|
)
|
|
def add_advantages(*args, **kwargs):
|
|
pass
|