mirror of
https://github.com/vale981/ray
synced 2025-03-05 18:11:42 -05:00
67 lines
2.2 KiB
Python
67 lines
2.2 KiB
Python
from typing import Optional
|
|
|
|
from ray.rllib.utils.annotations import override, PublicAPI
|
|
from ray.rllib.utils.framework import try_import_tf, try_import_torch
|
|
from ray.rllib.utils.schedules.schedule import Schedule
|
|
from ray.rllib.utils.typing import TensorType
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
torch, _ = try_import_torch()
|
|
|
|
|
|
@PublicAPI
|
|
class PolynomialSchedule(Schedule):
|
|
"""Polynomial interpolation between `initial_p` and `final_p`.
|
|
|
|
Over `schedule_timesteps`. After this many time steps, always returns
|
|
`final_p`.
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
schedule_timesteps: int,
|
|
final_p: float,
|
|
framework: Optional[str],
|
|
initial_p: float = 1.0,
|
|
power: float = 2.0,
|
|
):
|
|
"""Initializes a PolynomialSchedule instance.
|
|
|
|
Args:
|
|
schedule_timesteps: Number of time steps for which to
|
|
linearly anneal initial_p to final_p
|
|
final_p: Final output value.
|
|
framework: The framework descriptor string, e.g. "tf",
|
|
"torch", or None.
|
|
initial_p: Initial output value.
|
|
power: The exponent to use (default: quadratic).
|
|
"""
|
|
super().__init__(framework=framework)
|
|
assert schedule_timesteps > 0
|
|
self.schedule_timesteps = schedule_timesteps
|
|
self.final_p = final_p
|
|
self.initial_p = initial_p
|
|
self.power = power
|
|
|
|
@override(Schedule)
|
|
def _value(self, t: TensorType) -> TensorType:
|
|
"""Returns the result of:
|
|
final_p + (initial_p - final_p) * (1 - `t`/t_max) ** power
|
|
"""
|
|
if self.framework == "torch" and torch and isinstance(t, torch.Tensor):
|
|
t = t.float()
|
|
t = min(t, self.schedule_timesteps)
|
|
return (
|
|
self.final_p
|
|
+ (self.initial_p - self.final_p)
|
|
* (1.0 - (t / self.schedule_timesteps)) ** self.power
|
|
)
|
|
|
|
@override(Schedule)
|
|
def _tf_value_op(self, t: TensorType) -> TensorType:
|
|
t = tf.math.minimum(t, self.schedule_timesteps)
|
|
return (
|
|
self.final_p
|
|
+ (self.initial_p - self.final_p)
|
|
* (1.0 - (t / self.schedule_timesteps)) ** self.power
|
|
)
|