ray/rllib/tuned_examples/ppo/recomm-sys001-ppo.yaml

49 lines
1.5 KiB
YAML

recomm-sys001-ppo:
env: ray.rllib.examples.env.recommender_system_envs.RecommSys001
run: PPO
stop:
#evaluation/episode_reward_mean: 48.0
timesteps_total: 200000
config:
framework: tf
metrics_num_episodes_for_smoothing: 1000
# Env c'tor kwargs:
env_config:
# Number of different categories a doc can have and a user can
# have a preference for.
num_categories: 2
# Number of docs to choose (a slate) from each timestep.
num_docs_to_select_from: 10
# Slate size.
slate_size: 1
# Re-sample docs each timesteps.
num_docs_in_db: 100
# Re-sample user each episode.
num_users_in_db: 100
# User time budget (determines lengths of episodes).
user_time_budget: 60.0
# Larger networks seem to help (large obs/action spaces).
model:
fcnet_hiddens: [256, 256]
# Larger batch sizes seem to help (more stability, even with higher lr).
#train_batch_size: 32
#num_workers: 2
#num_gpus: 0
#lr_choice_model: 0.002
#lr_q_model: 0.002
#target_network_update_freq: 500
#tau: 1.0
# Evaluation settings.
evaluation_interval: 1
evaluation_num_workers: 4
evaluation_duration: 200
evaluation_duration_unit: episodes
evaluation_parallel_to_training: true