ray/rllib/tests/test_eager_support.py

164 lines
4.5 KiB
Python

import unittest
import ray
from ray import tune
from ray.rllib.algorithms.registry import get_algorithm_class
from ray.rllib.utils.framework import try_import_tf
tf1, tf, tfv = try_import_tf()
def check_support(alg, config, test_eager=False, test_trace=True):
config["framework"] = "tfe"
config["log_level"] = "ERROR"
# Test both continuous and discrete actions.
for cont in [True, False]:
if cont and alg in ["DQN", "APEX", "SimpleQ"]:
continue
elif not cont and alg in ["DDPG", "APEX_DDPG", "TD3"]:
continue
if cont:
config["env"] = "Pendulum-v1"
else:
config["env"] = "CartPole-v0"
a = get_algorithm_class(alg)
if test_eager:
print("tf-eager: alg={} cont.act={}".format(alg, cont))
config["eager_tracing"] = False
tune.run(a, config=config, stop={"training_iteration": 1}, verbose=1)
if test_trace:
config["eager_tracing"] = True
print("tf-eager-tracing: alg={} cont.act={}".format(alg, cont))
tune.run(a, config=config, stop={"training_iteration": 1}, verbose=1)
class TestEagerSupportPG(unittest.TestCase):
def setUp(self):
ray.init(num_cpus=4)
def tearDown(self):
ray.shutdown()
def test_simple_q(self):
check_support(
"SimpleQ",
{
"num_workers": 0,
"num_steps_sampled_before_learning_starts": 0,
},
)
def test_dqn(self):
check_support(
"DQN",
{
"num_workers": 0,
"num_steps_sampled_before_learning_starts": 0,
},
)
def test_ddpg(self):
check_support("DDPG", {"num_workers": 0})
# TODO(sven): Add these once APEX_DDPG supports eager.
# def test_apex_ddpg(self):
# check_support("APEX_DDPG", {"num_workers": 1})
def test_td3(self):
check_support("TD3", {"num_workers": 0})
def test_a2c(self):
check_support("A2C", {"num_workers": 0})
def test_a3c(self):
check_support("A3C", {"num_workers": 1})
def test_pg(self):
check_support("PG", {"num_workers": 0})
def test_ppo(self):
check_support("PPO", {"num_workers": 0})
def test_appo(self):
check_support("APPO", {"num_workers": 1, "num_gpus": 0})
def test_impala(self):
check_support("IMPALA", {"num_workers": 1, "num_gpus": 0}, test_eager=True)
class TestEagerSupportOffPolicy(unittest.TestCase):
def setUp(self):
ray.init(num_cpus=4)
def tearDown(self):
ray.shutdown()
def test_simple_q(self):
check_support(
"SimpleQ",
{
"num_workers": 0,
"replay_buffer_config": {"num_steps_sampled_before_learning_starts": 0},
},
)
def test_dqn(self):
check_support(
"DQN",
{
"num_workers": 0,
"num_steps_sampled_before_learning_starts": 0,
},
)
def test_ddpg(self):
check_support("DDPG", {"num_workers": 0})
# def test_apex_ddpg(self):
# check_support("APEX_DDPG", {"num_workers": 1})
def test_td3(self):
check_support("TD3", {"num_workers": 0})
def test_apex_dqn(self):
check_support(
"APEX",
{
"num_workers": 2,
"replay_buffer_config": {"num_steps_sampled_before_learning_starts": 0},
"num_gpus": 0,
"min_time_s_per_iteration": 1,
"min_sample_timesteps_per_iteration": 100,
"optimizer": {
"num_replay_buffer_shards": 1,
},
},
)
def test_sac(self):
check_support(
"SAC",
{
"num_workers": 0,
"num_steps_sampled_before_learning_starts": 0,
},
)
if __name__ == "__main__":
import sys
# Don't test anything for version 2.x (all tests are eager anyways).
# TODO: (sven) remove entire file in the future.
if tfv == 2:
print("\tskip due to tf==2.x")
sys.exit(0)
# One can specify the specific TestCase class to run.
# None for all unittest.TestCase classes in this file.
import pytest
class_ = sys.argv[1] if len(sys.argv) > 1 else None
sys.exit(pytest.main(["-v", __file__ + ("" if class_ is None else "::" + class_)]))