mirror of
https://github.com/vale981/ray
synced 2025-03-05 10:01:43 -05:00
282 lines
10 KiB
Python
282 lines
10 KiB
Python
from functools import partial
|
|
import gym
|
|
from gym.spaces import Box, Dict, Discrete, Tuple
|
|
import numpy as np
|
|
import unittest
|
|
|
|
import ray
|
|
from ray.rllib.models import ActionDistribution, ModelCatalog, MODEL_DEFAULTS
|
|
from ray.rllib.models.preprocessors import (
|
|
NoPreprocessor,
|
|
Preprocessor,
|
|
TupleFlatteningPreprocessor,
|
|
)
|
|
from ray.rllib.models.tf.tf_action_dist import (
|
|
MultiActionDistribution,
|
|
TFActionDistribution,
|
|
)
|
|
from ray.rllib.models.tf.tf_modelv2 import TFModelV2
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.rllib.utils.framework import try_import_tf, try_import_torch
|
|
from ray.rllib.utils.spaces.space_utils import get_dummy_batch_for_space
|
|
from ray.rllib.utils.torch_utils import convert_to_torch_tensor
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
torch, _ = try_import_torch()
|
|
|
|
|
|
class CustomPreprocessor(Preprocessor):
|
|
def _init_shape(self, obs_space, options):
|
|
return [1]
|
|
|
|
|
|
class CustomPreprocessor2(Preprocessor):
|
|
def _init_shape(self, obs_space, options):
|
|
return [1]
|
|
|
|
|
|
class CustomModel(TFModelV2):
|
|
def _build_layers(self, *args):
|
|
return tf.constant([[0] * 5]), None
|
|
|
|
|
|
class CustomActionDistribution(TFActionDistribution):
|
|
def __init__(self, inputs, model):
|
|
# Store our output shape.
|
|
custom_model_config = model.model_config["custom_model_config"]
|
|
if "output_dim" in custom_model_config:
|
|
self.output_shape = tf.concat(
|
|
[tf.shape(inputs)[:1], custom_model_config["output_dim"]], axis=0
|
|
)
|
|
else:
|
|
self.output_shape = tf.shape(inputs)
|
|
super().__init__(inputs, model)
|
|
|
|
@staticmethod
|
|
def required_model_output_shape(action_space, model_config=None):
|
|
custom_model_config = model_config["custom_model_config"] or {}
|
|
if custom_model_config is not None and custom_model_config.get("output_dim"):
|
|
return custom_model_config.get("output_dim")
|
|
return action_space.shape
|
|
|
|
@override(TFActionDistribution)
|
|
def _build_sample_op(self):
|
|
return tf.random.uniform(self.output_shape)
|
|
|
|
@override(ActionDistribution)
|
|
def logp(self, x):
|
|
return tf.zeros(self.output_shape)
|
|
|
|
|
|
class CustomMultiActionDistribution(MultiActionDistribution):
|
|
@override(MultiActionDistribution)
|
|
def entropy(self):
|
|
raise NotImplementedError
|
|
|
|
|
|
class TestModelCatalog(unittest.TestCase):
|
|
def tearDown(self):
|
|
ray.shutdown()
|
|
|
|
def test_custom_preprocessor(self):
|
|
ray.init(object_store_memory=1000 * 1024 * 1024)
|
|
ModelCatalog.register_custom_preprocessor("foo", CustomPreprocessor)
|
|
ModelCatalog.register_custom_preprocessor("bar", CustomPreprocessor2)
|
|
env = gym.make("CartPole-v0")
|
|
p1 = ModelCatalog.get_preprocessor(env, {"custom_preprocessor": "foo"})
|
|
self.assertEqual(str(type(p1)), str(CustomPreprocessor))
|
|
p2 = ModelCatalog.get_preprocessor(env, {"custom_preprocessor": "bar"})
|
|
self.assertEqual(str(type(p2)), str(CustomPreprocessor2))
|
|
p3 = ModelCatalog.get_preprocessor(env)
|
|
self.assertEqual(type(p3), NoPreprocessor)
|
|
|
|
def test_default_models(self):
|
|
ray.init(object_store_memory=1000 * 1024 * 1024)
|
|
|
|
# Build test cases
|
|
flat_input_case = {
|
|
"obs_space": Box(0, 1, shape=(3,), dtype=np.float32),
|
|
"action_space": Box(0, 1, shape=(4,)),
|
|
"num_outputs": 4,
|
|
"expected_model": "FullyConnectedNetwork",
|
|
}
|
|
img_input_case = {
|
|
"obs_space": Box(0, 1, shape=(84, 84, 3), dtype=np.float32),
|
|
"action_space": Discrete(5),
|
|
"num_outputs": 5,
|
|
"expected_model": "VisionNetwork",
|
|
}
|
|
complex_obs_space = Tuple(
|
|
[
|
|
Box(0, 1, shape=(3,), dtype=np.float32),
|
|
Box(0, 1, shape=(4,), dtype=np.float32),
|
|
Discrete(3),
|
|
]
|
|
)
|
|
obs_prep = TupleFlatteningPreprocessor(complex_obs_space)
|
|
flat_complex_input_case = {
|
|
"obs_space": obs_prep.observation_space,
|
|
"action_space": Box(0, 1, shape=(5,)),
|
|
"num_outputs": 5,
|
|
"expected_model": "FullyConnectedNetwork",
|
|
}
|
|
nested_complex_input_case = {
|
|
"obs_space": Tuple(
|
|
[
|
|
Box(0, 1, shape=(3,), dtype=np.float32),
|
|
Discrete(3),
|
|
Tuple(
|
|
[
|
|
Box(0, 1, shape=(84, 84, 3), dtype=np.float32),
|
|
Box(0, 1, shape=(84, 84, 3), dtype=np.float32),
|
|
]
|
|
),
|
|
]
|
|
),
|
|
"action_space": Box(0, 1, shape=(7,)),
|
|
"num_outputs": 7,
|
|
"expected_model": "ComplexInputNetwork",
|
|
}
|
|
|
|
# Define which tests to run per framework
|
|
test_suite = {
|
|
"tf": [
|
|
flat_input_case,
|
|
img_input_case,
|
|
flat_complex_input_case,
|
|
nested_complex_input_case,
|
|
],
|
|
"tf2": [
|
|
flat_input_case,
|
|
img_input_case,
|
|
flat_complex_input_case,
|
|
nested_complex_input_case,
|
|
],
|
|
"torch": [
|
|
flat_input_case,
|
|
img_input_case,
|
|
flat_complex_input_case,
|
|
nested_complex_input_case,
|
|
],
|
|
"jax": [
|
|
flat_input_case,
|
|
],
|
|
}
|
|
|
|
for fw, test_cases in test_suite.items():
|
|
for test in test_cases:
|
|
model_config = {}
|
|
if test["expected_model"] == "ComplexInputNetwork":
|
|
model_config["fcnet_hiddens"] = [256, 256]
|
|
m = ModelCatalog.get_model_v2(
|
|
obs_space=test["obs_space"],
|
|
action_space=test["action_space"],
|
|
num_outputs=test["num_outputs"],
|
|
model_config=model_config,
|
|
framework=fw,
|
|
)
|
|
self.assertTrue(test["expected_model"] in type(m).__name__)
|
|
# Do a test forward pass.
|
|
batch_size = 16
|
|
obs = get_dummy_batch_for_space(
|
|
test["obs_space"],
|
|
batch_size=batch_size,
|
|
fill_value="random",
|
|
)
|
|
if fw == "torch":
|
|
obs = convert_to_torch_tensor(obs)
|
|
out, state_outs = m({"obs": obs})
|
|
self.assertTrue(out.shape == (batch_size, test["num_outputs"]))
|
|
self.assertTrue(state_outs == [])
|
|
|
|
def test_custom_model(self):
|
|
ray.init(object_store_memory=1000 * 1024 * 1024)
|
|
ModelCatalog.register_custom_model("foo", CustomModel)
|
|
p1 = ModelCatalog.get_model_v2(
|
|
obs_space=Box(0, 1, shape=(3,), dtype=np.float32),
|
|
action_space=Discrete(5),
|
|
num_outputs=5,
|
|
model_config={"custom_model": "foo"},
|
|
)
|
|
self.assertEqual(str(type(p1)), str(CustomModel))
|
|
|
|
def test_custom_action_distribution(self):
|
|
class Model:
|
|
pass
|
|
|
|
ray.init(
|
|
object_store_memory=1000 * 1024 * 1024, ignore_reinit_error=True
|
|
) # otherwise fails sometimes locally
|
|
# registration
|
|
ModelCatalog.register_custom_action_dist("test", CustomActionDistribution)
|
|
action_space = Box(0, 1, shape=(5, 3), dtype=np.float32)
|
|
|
|
# test retrieving it
|
|
model_config = MODEL_DEFAULTS.copy()
|
|
model_config["custom_action_dist"] = "test"
|
|
dist_cls, param_shape = ModelCatalog.get_action_dist(action_space, model_config)
|
|
self.assertEqual(str(dist_cls), str(CustomActionDistribution))
|
|
self.assertEqual(param_shape, action_space.shape)
|
|
|
|
# test the class works as a distribution
|
|
dist_input = tf1.placeholder(tf.float32, (None,) + param_shape)
|
|
model = Model()
|
|
model.model_config = model_config
|
|
dist = dist_cls(dist_input, model=model)
|
|
self.assertEqual(dist.sample().shape[1:], dist_input.shape[1:])
|
|
self.assertIsInstance(dist.sample(), tf.Tensor)
|
|
with self.assertRaises(NotImplementedError):
|
|
dist.entropy()
|
|
|
|
# test passing the options to it
|
|
model_config["custom_model_config"].update({"output_dim": (3,)})
|
|
dist_cls, param_shape = ModelCatalog.get_action_dist(action_space, model_config)
|
|
self.assertEqual(param_shape, (3,))
|
|
dist_input = tf1.placeholder(tf.float32, (None,) + param_shape)
|
|
model.model_config = model_config
|
|
dist = dist_cls(dist_input, model=model)
|
|
self.assertEqual(dist.sample().shape[1:], dist_input.shape[1:])
|
|
self.assertIsInstance(dist.sample(), tf.Tensor)
|
|
with self.assertRaises(NotImplementedError):
|
|
dist.entropy()
|
|
|
|
def test_custom_multi_action_distribution(self):
|
|
class Model:
|
|
pass
|
|
|
|
ray.init(
|
|
object_store_memory=1000 * 1024 * 1024, ignore_reinit_error=True
|
|
) # otherwise fails sometimes locally
|
|
# registration
|
|
ModelCatalog.register_custom_action_dist("test", CustomMultiActionDistribution)
|
|
s1 = Discrete(5)
|
|
s2 = Box(0, 1, shape=(3,), dtype=np.float32)
|
|
spaces = dict(action_1=s1, action_2=s2)
|
|
action_space = Dict(spaces)
|
|
# test retrieving it
|
|
model_config = MODEL_DEFAULTS.copy()
|
|
model_config["custom_action_dist"] = "test"
|
|
dist_cls, param_shape = ModelCatalog.get_action_dist(action_space, model_config)
|
|
self.assertIsInstance(dist_cls, partial)
|
|
self.assertEqual(param_shape, s1.n + 2 * s2.shape[0])
|
|
|
|
# test the class works as a distribution
|
|
dist_input = tf1.placeholder(tf.float32, (None, param_shape))
|
|
model = Model()
|
|
model.model_config = model_config
|
|
dist = dist_cls(dist_input, model=model)
|
|
self.assertIsInstance(dist.sample(), dict)
|
|
self.assertIn("action_1", dist.sample())
|
|
self.assertIn("action_2", dist.sample())
|
|
self.assertEqual(dist.sample()["action_1"].dtype, tf.int64)
|
|
self.assertEqual(dist.sample()["action_2"].shape[1:], s2.shape)
|
|
|
|
with self.assertRaises(NotImplementedError):
|
|
dist.entropy()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import pytest
|
|
import sys
|
|
|
|
sys.exit(pytest.main(["-v", __file__]))
|