mirror of
https://github.com/vale981/ray
synced 2025-03-04 17:41:43 -05:00
241 lines
8.9 KiB
Python
241 lines
8.9 KiB
Python
from typing import Any, Dict, List, Optional
|
|
import time
|
|
|
|
from ray.actor import ActorHandle
|
|
from ray.util.iter import LocalIterator
|
|
from ray.rllib.evaluation.metrics import collect_episodes, summarize_episodes
|
|
from ray.rllib.execution.common import (
|
|
AGENT_STEPS_SAMPLED_COUNTER,
|
|
STEPS_SAMPLED_COUNTER,
|
|
STEPS_TRAINED_COUNTER,
|
|
STEPS_TRAINED_THIS_ITER_COUNTER,
|
|
_get_shared_metrics,
|
|
)
|
|
from ray.rllib.evaluation.worker_set import WorkerSet
|
|
|
|
|
|
def StandardMetricsReporting(
|
|
train_op: LocalIterator[Any],
|
|
workers: WorkerSet,
|
|
config: dict,
|
|
selected_workers: List[ActorHandle] = None,
|
|
by_steps_trained: bool = False,
|
|
) -> LocalIterator[dict]:
|
|
"""Operator to periodically collect and report metrics.
|
|
|
|
Args:
|
|
train_op: Operator for executing training steps.
|
|
We ignore the output values.
|
|
workers: Rollout workers to collect metrics from.
|
|
config: Algorithm configuration, used to determine the frequency
|
|
of stats reporting.
|
|
selected_workers: Override the list of remote workers
|
|
to collect metrics from.
|
|
by_steps_trained: If True, uses the `STEPS_TRAINED_COUNTER`
|
|
instead of the `STEPS_SAMPLED_COUNTER` in metrics.
|
|
|
|
Returns:
|
|
LocalIterator[dict]: A local iterator over training results.
|
|
|
|
Examples:
|
|
>>> from ray.rllib.execution import ParallelRollouts, TrainOneStep
|
|
>>> train_op = ParallelRollouts(...) # doctest: +SKIP
|
|
... .for_each(TrainOneStep(...))
|
|
>>> metrics_op = StandardMetricsReporting( # doctest: +SKIP
|
|
... train_op, workers, config)
|
|
>>> next(metrics_op) # doctest: +SKIP
|
|
{"episode_reward_max": ..., "episode_reward_mean": ..., ...}
|
|
"""
|
|
|
|
output_op = (
|
|
train_op.filter(
|
|
OncePerTimestepsElapsed(
|
|
config["min_train_timesteps_per_iteration"] or 0
|
|
if by_steps_trained
|
|
else config["min_sample_timesteps_per_iteration"] or 0,
|
|
by_steps_trained=by_steps_trained,
|
|
)
|
|
)
|
|
.filter(OncePerTimeInterval(config["min_time_s_per_iteration"]))
|
|
.for_each(
|
|
CollectMetrics(
|
|
workers,
|
|
min_history=config["metrics_num_episodes_for_smoothing"],
|
|
timeout_seconds=config["metrics_episode_collection_timeout_s"],
|
|
keep_per_episode_custom_metrics=config[
|
|
"keep_per_episode_custom_metrics"
|
|
],
|
|
selected_workers=selected_workers,
|
|
by_steps_trained=by_steps_trained,
|
|
)
|
|
)
|
|
)
|
|
return output_op
|
|
|
|
|
|
class CollectMetrics:
|
|
"""Callable that collects metrics from workers.
|
|
|
|
The metrics are smoothed over a given history window.
|
|
|
|
This should be used with the .for_each() operator. For a higher level
|
|
API, consider using StandardMetricsReporting instead.
|
|
|
|
Examples:
|
|
>>> from ray.rllib.execution.metric_ops import CollectMetrics
|
|
>>> train_op, workers = ... # doctest: +SKIP
|
|
>>> output_op = train_op.for_each(CollectMetrics(workers)) # doctest: +SKIP
|
|
>>> print(next(output_op)) # doctest: +SKIP
|
|
{"episode_reward_max": ..., "episode_reward_mean": ..., ...}
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
workers: WorkerSet,
|
|
min_history: int = 100,
|
|
timeout_seconds: int = 180,
|
|
keep_per_episode_custom_metrics: bool = False,
|
|
selected_workers: List[ActorHandle] = None,
|
|
by_steps_trained: bool = False,
|
|
):
|
|
self.workers = workers
|
|
self.episode_history = []
|
|
self.to_be_collected = []
|
|
self.min_history = min_history
|
|
self.timeout_seconds = timeout_seconds
|
|
self.keep_custom_metrics = keep_per_episode_custom_metrics
|
|
self.selected_workers = selected_workers
|
|
self.by_steps_trained = by_steps_trained
|
|
|
|
def __call__(self, _: Any) -> Dict:
|
|
# Collect worker metrics.
|
|
episodes, self.to_be_collected = collect_episodes(
|
|
self.workers.local_worker(),
|
|
self.selected_workers or self.workers.remote_workers(),
|
|
self.to_be_collected,
|
|
timeout_seconds=self.timeout_seconds,
|
|
)
|
|
orig_episodes = list(episodes)
|
|
missing = self.min_history - len(episodes)
|
|
if missing > 0:
|
|
episodes = self.episode_history[-missing:] + episodes
|
|
assert len(episodes) <= self.min_history
|
|
self.episode_history.extend(orig_episodes)
|
|
self.episode_history = self.episode_history[-self.min_history :]
|
|
res = summarize_episodes(episodes, orig_episodes, self.keep_custom_metrics)
|
|
|
|
# Add in iterator metrics.
|
|
metrics = _get_shared_metrics()
|
|
custom_metrics_from_info = metrics.info.pop("custom_metrics", {})
|
|
timers = {}
|
|
counters = {}
|
|
info = {}
|
|
info.update(metrics.info)
|
|
for k, counter in metrics.counters.items():
|
|
counters[k] = counter
|
|
for k, timer in metrics.timers.items():
|
|
timers["{}_time_ms".format(k)] = round(timer.mean * 1000, 3)
|
|
if timer.has_units_processed():
|
|
timers["{}_throughput".format(k)] = round(timer.mean_throughput, 3)
|
|
res.update(
|
|
{
|
|
"num_healthy_workers": len(self.workers.remote_workers()),
|
|
"timesteps_total": (
|
|
metrics.counters[STEPS_TRAINED_COUNTER]
|
|
if self.by_steps_trained
|
|
else metrics.counters[STEPS_SAMPLED_COUNTER]
|
|
),
|
|
# tune.Trainable uses timesteps_this_iter for tracking
|
|
# total timesteps.
|
|
"timesteps_this_iter": metrics.counters[
|
|
STEPS_TRAINED_THIS_ITER_COUNTER
|
|
],
|
|
"agent_timesteps_total": metrics.counters.get(
|
|
AGENT_STEPS_SAMPLED_COUNTER, 0
|
|
),
|
|
}
|
|
)
|
|
res["timers"] = timers
|
|
res["info"] = info
|
|
res["info"].update(counters)
|
|
res["custom_metrics"] = res.get("custom_metrics", {})
|
|
res["episode_media"] = res.get("episode_media", {})
|
|
res["custom_metrics"].update(custom_metrics_from_info)
|
|
return res
|
|
|
|
|
|
class OncePerTimeInterval:
|
|
"""Callable that returns True once per given interval.
|
|
|
|
This should be used with the .filter() operator to throttle / rate-limit
|
|
metrics reporting. For a higher-level API, consider using
|
|
StandardMetricsReporting instead.
|
|
|
|
Examples:
|
|
>>> import time
|
|
>>> from ray.rllib.execution.metric_ops import OncePerTimeInterval
|
|
>>> train_op = ... # doctest: +SKIP
|
|
>>> throttled_op = train_op.filter(OncePerTimeInterval(5)) # doctest: +SKIP
|
|
>>> start = time.time() # doctest: +SKIP
|
|
>>> next(throttled_op) # doctest: +SKIP
|
|
>>> print(time.time() - start) # doctest: +SKIP
|
|
5.00001 # will be greater than 5 seconds
|
|
"""
|
|
|
|
def __init__(self, delay: Optional[float] = None):
|
|
self.delay = delay or 0.0
|
|
self.last_returned_true = 0
|
|
|
|
def __call__(self, item: Any) -> bool:
|
|
# No minimum time to wait for -> Return True.
|
|
if self.delay <= 0.0:
|
|
return True
|
|
# Return True, if time since last returned=True is larger than
|
|
# `self.delay`.
|
|
now = time.time()
|
|
if now - self.last_returned_true > self.delay:
|
|
self.last_returned_true = now
|
|
return True
|
|
return False
|
|
|
|
|
|
class OncePerTimestepsElapsed:
|
|
"""Callable that returns True once per given number of timesteps.
|
|
|
|
This should be used with the .filter() operator to throttle / rate-limit
|
|
metrics reporting. For a higher-level API, consider using
|
|
StandardMetricsReporting instead.
|
|
|
|
Examples:
|
|
>>> from ray.rllib.execution.metric_ops import OncePerTimestepsElapsed
|
|
>>> train_op = ... # doctest: +SKIP
|
|
>>> throttled_op = train_op.filter( # doctest: +SKIP
|
|
... OncePerTimestepsElapsed(1000))
|
|
>>> next(throttled_op) # doctest: +SKIP
|
|
# will only return after 1000 steps have elapsed
|
|
"""
|
|
|
|
def __init__(self, delay_steps: int, by_steps_trained: bool = False):
|
|
"""
|
|
Args:
|
|
delay_steps: The number of steps (sampled or trained) every
|
|
which this op returns True.
|
|
by_steps_trained: If True, uses the `STEPS_TRAINED_COUNTER`
|
|
instead of the `STEPS_SAMPLED_COUNTER` in metrics.
|
|
"""
|
|
self.delay_steps = delay_steps
|
|
self.by_steps_trained = by_steps_trained
|
|
self.last_called = 0
|
|
|
|
def __call__(self, item: Any) -> bool:
|
|
if self.delay_steps <= 0:
|
|
return True
|
|
metrics = _get_shared_metrics()
|
|
if self.by_steps_trained:
|
|
now = metrics.counters[STEPS_TRAINED_COUNTER]
|
|
else:
|
|
now = metrics.counters[STEPS_SAMPLED_COUNTER]
|
|
if now - self.last_called >= self.delay_steps:
|
|
self.last_called = now
|
|
return True
|
|
return False
|