mirror of
https://github.com/vale981/ray
synced 2025-03-04 17:41:43 -05:00

update rllib example to use Tuner API. Signed-off-by: xwjiang2010 <xwjiang2010@gmail.com>
88 lines
2.8 KiB
Python
88 lines
2.8 KiB
Python
# __sphinx_doc_replay_buffer_api_example_script_begin__
|
|
"""Simple example of how to modify replay buffer behaviour.
|
|
|
|
We modify R2D2 to utilize prioritized replay but supplying it with the
|
|
PrioritizedMultiAgentReplayBuffer instead of the standard MultiAgentReplayBuffer.
|
|
This is possible because R2D2 uses the DQN training iteration function,
|
|
which includes and a priority update, given that a fitting buffer is provided.
|
|
"""
|
|
|
|
import argparse
|
|
|
|
import ray
|
|
from ray import air, tune
|
|
from ray.rllib.algorithms.r2d2 import R2D2Config
|
|
from ray.rllib.utils.framework import try_import_tf
|
|
from ray.rllib.utils.replay_buffers.replay_buffer import StorageUnit
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
|
|
tf1, tf, tfv = try_import_tf()
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
|
parser.add_argument("--num-cpus", type=int, default=0)
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.",
|
|
)
|
|
parser.add_argument(
|
|
"--stop-iters", type=int, default=50, help="Number of iterations to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-timesteps", type=int, default=100000, help="Number of timesteps to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-reward", type=float, default=100.0, help="Reward at which we stop training."
|
|
)
|
|
parser.add_argument(
|
|
"--as-test",
|
|
action="store_true",
|
|
help="Whether this script should be run as a test: --stop-reward must "
|
|
"be achieved within --stop-timesteps AND --stop-iters.",
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
|
|
ray.init(num_cpus=args.num_cpus or None)
|
|
|
|
config = (
|
|
R2D2Config()
|
|
.environment(env="CartPole-v0")
|
|
.training(model=dict(use_lstm=True, lstm_cell_size=64, max_seq_len=20))
|
|
.framework(framework=args.framework)
|
|
.rollouts(num_workers=4)
|
|
)
|
|
|
|
stop_config = {
|
|
"episode_reward_mean": args.stop_reward,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"training_iteration": args.stop_iters,
|
|
}
|
|
|
|
# This is where we add prioritized experiences replay
|
|
# The training iteration function that is shared by DQN and R2D2 already
|
|
# includes a priority update step.
|
|
replay_buffer_config = {
|
|
"type": "MultiAgentPrioritizedReplayBuffer",
|
|
# Although not necessary, we can modify the default constructor args of
|
|
# the replay buffer here
|
|
"prioritized_replay_alpha": 0.5,
|
|
"storage_unit": StorageUnit.SEQUENCES,
|
|
"replay_burn_in": 20,
|
|
"zero_init_states": True,
|
|
}
|
|
|
|
config.training(replay_buffer_config=replay_buffer_config)
|
|
|
|
results = tune.Tuner(
|
|
"R2D2", param_space=config.to_dict(), run_config=air.RunConfig(stop=stop_config)
|
|
).fit()
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
ray.shutdown()
|
|
|
|
# __sphinx_doc_replay_buffer_api_example_script_end__
|