mirror of
https://github.com/vale981/ray
synced 2025-03-04 17:41:43 -05:00

update rllib example to use Tuner API. Signed-off-by: xwjiang2010 <xwjiang2010@gmail.com>
88 lines
2.7 KiB
Python
88 lines
2.7 KiB
Python
import argparse
|
|
from gym.spaces import Dict, Tuple, Box, Discrete
|
|
import os
|
|
|
|
import ray
|
|
from ray import air, tune
|
|
from ray.tune.registry import register_env
|
|
from ray.rllib.examples.env.nested_space_repeat_after_me_env import (
|
|
NestedSpaceRepeatAfterMeEnv,
|
|
)
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--run", type=str, default="PPO", help="The RLlib-registered algorithm to use."
|
|
)
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.",
|
|
)
|
|
parser.add_argument("--num-cpus", type=int, default=0)
|
|
parser.add_argument(
|
|
"--as-test",
|
|
action="store_true",
|
|
help="Whether this script should be run as a test: --stop-reward must "
|
|
"be achieved within --stop-timesteps AND --stop-iters.",
|
|
)
|
|
parser.add_argument(
|
|
"--local-mode",
|
|
action="store_true",
|
|
help="Init Ray in local mode for easier debugging.",
|
|
)
|
|
parser.add_argument(
|
|
"--stop-iters", type=int, default=100, help="Number of iterations to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-timesteps", type=int, default=100000, help="Number of timesteps to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-reward", type=float, default=0.0, help="Reward at which we stop training."
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
ray.init(num_cpus=args.num_cpus or None, local_mode=args.local_mode)
|
|
register_env(
|
|
"NestedSpaceRepeatAfterMeEnv", lambda c: NestedSpaceRepeatAfterMeEnv(c)
|
|
)
|
|
|
|
config = {
|
|
"env": "NestedSpaceRepeatAfterMeEnv",
|
|
"env_config": {
|
|
"space": Dict(
|
|
{
|
|
"a": Tuple([Dict({"d": Box(-10.0, 10.0, ()), "e": Discrete(2)})]),
|
|
"b": Box(-10.0, 10.0, (2,)),
|
|
"c": Discrete(4),
|
|
}
|
|
),
|
|
},
|
|
"entropy_coeff": 0.00005, # We don't want high entropy in this Env.
|
|
"gamma": 0.0, # No history in Env (bandit problem).
|
|
"lr": 0.0005,
|
|
"num_envs_per_worker": 20,
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
"num_sgd_iter": 4,
|
|
"num_workers": 0,
|
|
"vf_loss_coeff": 0.01,
|
|
"framework": args.framework,
|
|
}
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"episode_reward_mean": args.stop_reward,
|
|
"timesteps_total": args.stop_timesteps,
|
|
}
|
|
|
|
results = tune.Tuner(
|
|
args.run, param_space=config, run_config=air.RunConfig(stop=stop, verbose=1)
|
|
).fit()
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
|
|
ray.shutdown()
|