ray/rllib/examples/nested_action_spaces.py
xwjiang2010 fcf897ee72
[air] update rllib example to use Tuner API. (#26987)
update rllib example to use Tuner API.

Signed-off-by: xwjiang2010 <xwjiang2010@gmail.com>
2022-07-27 12:12:59 +01:00

88 lines
2.7 KiB
Python

import argparse
from gym.spaces import Dict, Tuple, Box, Discrete
import os
import ray
from ray import air, tune
from ray.tune.registry import register_env
from ray.rllib.examples.env.nested_space_repeat_after_me_env import (
NestedSpaceRepeatAfterMeEnv,
)
from ray.rllib.utils.test_utils import check_learning_achieved
parser = argparse.ArgumentParser()
parser.add_argument(
"--run", type=str, default="PPO", help="The RLlib-registered algorithm to use."
)
parser.add_argument(
"--framework",
choices=["tf", "tf2", "tfe", "torch"],
default="tf",
help="The DL framework specifier.",
)
parser.add_argument("--num-cpus", type=int, default=0)
parser.add_argument(
"--as-test",
action="store_true",
help="Whether this script should be run as a test: --stop-reward must "
"be achieved within --stop-timesteps AND --stop-iters.",
)
parser.add_argument(
"--local-mode",
action="store_true",
help="Init Ray in local mode for easier debugging.",
)
parser.add_argument(
"--stop-iters", type=int, default=100, help="Number of iterations to train."
)
parser.add_argument(
"--stop-timesteps", type=int, default=100000, help="Number of timesteps to train."
)
parser.add_argument(
"--stop-reward", type=float, default=0.0, help="Reward at which we stop training."
)
if __name__ == "__main__":
args = parser.parse_args()
ray.init(num_cpus=args.num_cpus or None, local_mode=args.local_mode)
register_env(
"NestedSpaceRepeatAfterMeEnv", lambda c: NestedSpaceRepeatAfterMeEnv(c)
)
config = {
"env": "NestedSpaceRepeatAfterMeEnv",
"env_config": {
"space": Dict(
{
"a": Tuple([Dict({"d": Box(-10.0, 10.0, ()), "e": Discrete(2)})]),
"b": Box(-10.0, 10.0, (2,)),
"c": Discrete(4),
}
),
},
"entropy_coeff": 0.00005, # We don't want high entropy in this Env.
"gamma": 0.0, # No history in Env (bandit problem).
"lr": 0.0005,
"num_envs_per_worker": 20,
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"num_sgd_iter": 4,
"num_workers": 0,
"vf_loss_coeff": 0.01,
"framework": args.framework,
}
stop = {
"training_iteration": args.stop_iters,
"episode_reward_mean": args.stop_reward,
"timesteps_total": args.stop_timesteps,
}
results = tune.Tuner(
args.run, param_space=config, run_config=air.RunConfig(stop=stop, verbose=1)
).fit()
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()