mirror of
https://github.com/vale981/ray
synced 2025-03-04 17:41:43 -05:00

update rllib example to use Tuner API. Signed-off-by: xwjiang2010 <xwjiang2010@gmail.com>
97 lines
3.1 KiB
Python
97 lines
3.1 KiB
Python
"""Example of running a custom hand-coded policy alongside trainable policies.
|
|
|
|
This example has two policies:
|
|
(1) a simple PG policy
|
|
(2) a hand-coded policy that acts at random in the env (doesn't learn)
|
|
|
|
In the console output, you can see the PG policy does much better than random:
|
|
Result for PG_multi_cartpole_0:
|
|
...
|
|
policy_reward_mean:
|
|
pg_policy: 185.23
|
|
random: 21.255
|
|
...
|
|
"""
|
|
|
|
import argparse
|
|
import os
|
|
|
|
import ray
|
|
from ray import air, tune
|
|
from ray.tune.registry import register_env
|
|
from ray.rllib.examples.env.multi_agent import MultiAgentCartPole
|
|
from ray.rllib.examples.policy.random_policy import RandomPolicy
|
|
from ray.rllib.policy.policy import PolicySpec
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.",
|
|
)
|
|
parser.add_argument(
|
|
"--as-test",
|
|
action="store_true",
|
|
help="Whether this script should be run as a test: --stop-reward must "
|
|
"be achieved within --stop-timesteps AND --stop-iters.",
|
|
)
|
|
parser.add_argument(
|
|
"--stop-iters", type=int, default=20, help="Number of iterations to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-timesteps", type=int, default=100000, help="Number of timesteps to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-reward", type=float, default=150.0, help="Reward at which we stop training."
|
|
)
|
|
|
|
if __name__ == "__main__":
|
|
args = parser.parse_args()
|
|
ray.init()
|
|
|
|
# Simple environment with 4 independent cartpole entities
|
|
register_env(
|
|
"multi_agent_cartpole", lambda _: MultiAgentCartPole({"num_agents": 4})
|
|
)
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"episode_reward_mean": args.stop_reward,
|
|
"timesteps_total": args.stop_timesteps,
|
|
}
|
|
|
|
config = {
|
|
"env": "multi_agent_cartpole",
|
|
"multiagent": {
|
|
# The multiagent Policy map.
|
|
"policies": {
|
|
# The Policy we are actually learning.
|
|
"pg_policy": PolicySpec(config={"framework": args.framework}),
|
|
# Random policy we are playing against.
|
|
"random": PolicySpec(policy_class=RandomPolicy),
|
|
},
|
|
# Map to either random behavior or PR learning behavior based on
|
|
# the agent's ID.
|
|
"policy_mapping_fn": (
|
|
lambda aid, **kwargs: ["pg_policy", "random"][aid % 2]
|
|
),
|
|
# We wouldn't have to specify this here as the RandomPolicy does
|
|
# not learn anyways (it has an empty `learn_on_batch` method), but
|
|
# it's good practice to define this list here either way.
|
|
"policies_to_train": ["pg_policy"],
|
|
},
|
|
"framework": args.framework,
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
}
|
|
|
|
results = tune.Tuner(
|
|
"PG", param_space=config, run_config=air.RunConfig(stop=stop, verbose=1)
|
|
).fit()
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
|
|
ray.shutdown()
|