ray/rllib/examples/multi_agent_custom_policy.py
xwjiang2010 fcf897ee72
[air] update rllib example to use Tuner API. (#26987)
update rllib example to use Tuner API.

Signed-off-by: xwjiang2010 <xwjiang2010@gmail.com>
2022-07-27 12:12:59 +01:00

97 lines
3.1 KiB
Python

"""Example of running a custom hand-coded policy alongside trainable policies.
This example has two policies:
(1) a simple PG policy
(2) a hand-coded policy that acts at random in the env (doesn't learn)
In the console output, you can see the PG policy does much better than random:
Result for PG_multi_cartpole_0:
...
policy_reward_mean:
pg_policy: 185.23
random: 21.255
...
"""
import argparse
import os
import ray
from ray import air, tune
from ray.tune.registry import register_env
from ray.rllib.examples.env.multi_agent import MultiAgentCartPole
from ray.rllib.examples.policy.random_policy import RandomPolicy
from ray.rllib.policy.policy import PolicySpec
from ray.rllib.utils.test_utils import check_learning_achieved
parser = argparse.ArgumentParser()
parser.add_argument(
"--framework",
choices=["tf", "tf2", "tfe", "torch"],
default="tf",
help="The DL framework specifier.",
)
parser.add_argument(
"--as-test",
action="store_true",
help="Whether this script should be run as a test: --stop-reward must "
"be achieved within --stop-timesteps AND --stop-iters.",
)
parser.add_argument(
"--stop-iters", type=int, default=20, help="Number of iterations to train."
)
parser.add_argument(
"--stop-timesteps", type=int, default=100000, help="Number of timesteps to train."
)
parser.add_argument(
"--stop-reward", type=float, default=150.0, help="Reward at which we stop training."
)
if __name__ == "__main__":
args = parser.parse_args()
ray.init()
# Simple environment with 4 independent cartpole entities
register_env(
"multi_agent_cartpole", lambda _: MultiAgentCartPole({"num_agents": 4})
)
stop = {
"training_iteration": args.stop_iters,
"episode_reward_mean": args.stop_reward,
"timesteps_total": args.stop_timesteps,
}
config = {
"env": "multi_agent_cartpole",
"multiagent": {
# The multiagent Policy map.
"policies": {
# The Policy we are actually learning.
"pg_policy": PolicySpec(config={"framework": args.framework}),
# Random policy we are playing against.
"random": PolicySpec(policy_class=RandomPolicy),
},
# Map to either random behavior or PR learning behavior based on
# the agent's ID.
"policy_mapping_fn": (
lambda aid, **kwargs: ["pg_policy", "random"][aid % 2]
),
# We wouldn't have to specify this here as the RandomPolicy does
# not learn anyways (it has an empty `learn_on_batch` method), but
# it's good practice to define this list here either way.
"policies_to_train": ["pg_policy"],
},
"framework": args.framework,
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
}
results = tune.Tuner(
"PG", param_space=config, run_config=air.RunConfig(stop=stop, verbose=1)
).fit()
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()