mirror of
https://github.com/vale981/ray
synced 2025-03-04 17:41:43 -05:00

update rllib example to use Tuner API. Signed-off-by: xwjiang2010 <xwjiang2010@gmail.com>
134 lines
4.3 KiB
Python
134 lines
4.3 KiB
Python
"""
|
|
This example script demonstrates how one can define a custom logger
|
|
object for any RLlib Trainer via the Trainer's config dict's
|
|
"logger_config" key.
|
|
By default (logger_config=None), RLlib will construct a tune
|
|
UnifiedLogger object, which logs JSON, CSV, and TBX output.
|
|
|
|
Below examples include:
|
|
- Disable logging entirely.
|
|
- Using only one of tune's Json, CSV, or TBX loggers.
|
|
- Defining a custom logger (by sub-classing tune.logger.py::Logger).
|
|
"""
|
|
|
|
import argparse
|
|
import os
|
|
|
|
from ray.rllib.utils.test_utils import check_learning_achieved
|
|
from ray.tune.logger import Logger, LegacyLoggerCallback
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--run", type=str, default="PPO", help="The RLlib-registered algorithm to use."
|
|
)
|
|
parser.add_argument("--num-cpus", type=int, default=0)
|
|
parser.add_argument(
|
|
"--framework",
|
|
choices=["tf", "tf2", "tfe", "torch"],
|
|
default="tf",
|
|
help="The DL framework specifier.",
|
|
)
|
|
parser.add_argument(
|
|
"--as-test",
|
|
action="store_true",
|
|
help="Whether this script should be run as a test: --stop-reward must "
|
|
"be achieved within --stop-timesteps AND --stop-iters.",
|
|
)
|
|
parser.add_argument(
|
|
"--stop-iters", type=int, default=200, help="Number of iterations to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-timesteps", type=int, default=100000, help="Number of timesteps to train."
|
|
)
|
|
parser.add_argument(
|
|
"--stop-reward", type=float, default=150.0, help="Reward at which we stop training."
|
|
)
|
|
|
|
|
|
class MyPrintLogger(Logger):
|
|
"""Logs results by simply printing out everything."""
|
|
|
|
def _init(self):
|
|
# Custom init function.
|
|
print("Initializing ...")
|
|
# Setting up our log-line prefix.
|
|
self.prefix = self.config.get("logger_config").get("prefix")
|
|
|
|
def on_result(self, result: dict):
|
|
# Define, what should happen on receiving a `result` (dict).
|
|
print(f"{self.prefix}: {result}")
|
|
|
|
def close(self):
|
|
# Releases all resources used by this logger.
|
|
print("Closing")
|
|
|
|
def flush(self):
|
|
# Flushing all possible disk writes to permanent storage.
|
|
print("Flushing ;)", flush=True)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import ray
|
|
from ray import air, tune
|
|
|
|
args = parser.parse_args()
|
|
|
|
ray.init(num_cpus=args.num_cpus or None)
|
|
|
|
config = {
|
|
"env": "CartPole-v0" if args.run not in ["DDPG", "TD3"] else "Pendulum-v1",
|
|
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
|
|
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
|
|
"framework": args.framework,
|
|
# Run with tracing enabled for tfe/tf2.
|
|
"eager_tracing": args.framework in ["tfe", "tf2"],
|
|
# Setting up a custom logger config.
|
|
# ----------------------------------
|
|
# The following are different examples of custom logging setups:
|
|
# 1) Disable logging entirely.
|
|
# "logger_config": {
|
|
# # Use the tune.logger.NoopLogger class for no logging.
|
|
# "type": "ray.tune.logger.NoopLogger",
|
|
# },
|
|
# 2) Use tune's JsonLogger only.
|
|
# Alternatively, use `CSVLogger` or `TBXLogger` instead of
|
|
# `JsonLogger` in the "type" key below.
|
|
# "logger_config": {
|
|
# "type": "ray.tune.logger.JsonLogger",
|
|
# # Optional: Custom logdir (do not define this here
|
|
# # for using ~/ray_results/...).
|
|
# "logdir": "/tmp",
|
|
# },
|
|
# 3) Custom logger (see `MyPrintLogger` class above).
|
|
"logger_config": {
|
|
# Provide the class directly or via fully qualified class
|
|
# path.
|
|
"type": MyPrintLogger,
|
|
# `config` keys:
|
|
"prefix": "ABC",
|
|
# Optional: Custom logdir (do not define this here
|
|
# for using ~/ray_results/...).
|
|
# "logdir": "/somewhere/on/my/file/system/"
|
|
},
|
|
}
|
|
|
|
stop = {
|
|
"training_iteration": args.stop_iters,
|
|
"timesteps_total": args.stop_timesteps,
|
|
"episode_reward_mean": args.stop_reward,
|
|
}
|
|
|
|
tuner = tune.Tuner(
|
|
args.run,
|
|
param_space=config,
|
|
run_config=air.RunConfig(
|
|
stop=stop,
|
|
verbose=2,
|
|
callbacks=[LegacyLoggerCallback(MyPrintLogger)],
|
|
),
|
|
)
|
|
results = tuner.fit()
|
|
|
|
if args.as_test:
|
|
check_learning_achieved(results, args.stop_reward)
|
|
ray.shutdown()
|