ray/rllib/examples/curriculum_learning.py
xwjiang2010 fcf897ee72
[air] update rllib example to use Tuner API. (#26987)
update rllib example to use Tuner API.

Signed-off-by: xwjiang2010 <xwjiang2010@gmail.com>
2022-07-27 12:12:59 +01:00

131 lines
4.4 KiB
Python

"""
Example of a curriculum learning setup using the `TaskSettableEnv` API
and the env_task_fn config.
This example shows:
- Writing your own curriculum-capable environment using gym.Env.
- Defining a env_task_fn that determines, whether and which new task
the env(s) should be set to (using the TaskSettableEnv API).
- Using Tune and RLlib to curriculum-learn this env.
You can visualize experiment results in ~/ray_results using TensorBoard.
"""
import argparse
import numpy as np
import os
import ray
from ray import air, tune
from ray.rllib.env.apis.task_settable_env import TaskSettableEnv, TaskType
from ray.rllib.env.env_context import EnvContext
from ray.rllib.examples.env.curriculum_capable_env import CurriculumCapableEnv
from ray.rllib.utils.framework import try_import_tf, try_import_torch
from ray.rllib.utils.test_utils import check_learning_achieved
tf1, tf, tfv = try_import_tf()
torch, nn = try_import_torch()
parser = argparse.ArgumentParser()
parser.add_argument(
"--run", type=str, default="PPO", help="The RLlib-registered algorithm to use."
)
parser.add_argument(
"--framework",
choices=["tf", "tf2", "tfe", "torch"],
default="tf",
help="The DL framework specifier.",
)
parser.add_argument(
"--as-test",
action="store_true",
help="Whether this script should be run as a test: --stop-reward must "
"be achieved within --stop-timesteps AND --stop-iters.",
)
parser.add_argument(
"--stop-iters", type=int, default=50, help="Number of iterations to train."
)
parser.add_argument(
"--stop-timesteps", type=int, default=200000, help="Number of timesteps to train."
)
parser.add_argument(
"--stop-reward",
type=float,
default=10000.0,
help="Reward at which we stop training.",
)
parser.add_argument(
"--local-mode",
action="store_true",
help="Init Ray in local mode for easier debugging.",
)
def curriculum_fn(
train_results: dict, task_settable_env: TaskSettableEnv, env_ctx: EnvContext
) -> TaskType:
"""Function returning a possibly new task to set `task_settable_env` to.
Args:
train_results: The train results returned by Algorithm.train().
task_settable_env: A single TaskSettableEnv object
used inside any worker and at any vector position. Use `env_ctx`
to get the worker_index, vector_index, and num_workers.
env_ctx: The env context object (i.e. env's config dict
plus properties worker_index, vector_index and num_workers) used
to setup the `task_settable_env`.
Returns:
TaskType: The task to set the env to. This may be the same as the
current one.
"""
# Our env supports tasks 1 (default) to 5.
# With each task, rewards get scaled up by a factor of 10, such that:
# Level 1: Expect rewards between 0.0 and 1.0.
# Level 2: Expect rewards between 1.0 and 10.0, etc..
# We will thus raise the level/task each time we hit a new power of 10.0
new_task = int(np.log10(train_results["episode_reward_mean"]) + 2.1)
# Clamp between valid values, just in case:
new_task = max(min(new_task, 5), 1)
print(
f"Worker #{env_ctx.worker_index} vec-idx={env_ctx.vector_index}"
f"\nR={train_results['episode_reward_mean']}"
f"\nSetting env to task={new_task}"
)
return new_task
if __name__ == "__main__":
args = parser.parse_args()
ray.init(local_mode=args.local_mode)
# Can also register the env creator function explicitly with:
# register_env(
# "curriculum_env", lambda config: CurriculumCapableEnv(config))
config = {
"env": CurriculumCapableEnv, # or "curriculum_env" if registered above
"env_config": {
"start_level": 1,
},
"num_workers": 2, # parallelism
"num_envs_per_worker": 5,
"env_task_fn": curriculum_fn,
# Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0.
"num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")),
"framework": args.framework,
}
stop = {
"training_iteration": args.stop_iters,
"timesteps_total": args.stop_timesteps,
"episode_reward_mean": args.stop_reward,
}
tuner = tune.Tuner(
args.run, param_space=config, run_config=air.RunConfig(stop=stop, verbose=2)
)
results = tuner.fit()
if args.as_test:
check_learning_achieved(results, args.stop_reward)
ray.shutdown()