mirror of
https://github.com/vale981/ray
synced 2025-03-05 10:01:43 -05:00
218 lines
7.2 KiB
Python
218 lines
7.2 KiB
Python
"""
|
|
DeepMind Control Suite Wrapper directly sourced from:
|
|
https://github.com/denisyarats/dmc2gym
|
|
|
|
MIT License
|
|
|
|
Copyright (c) 2020 Denis Yarats
|
|
|
|
Permission is hereby granted, free of charge, to any person obtaining a copy
|
|
of this software and associated documentation files (the "Software"), to deal
|
|
in the Software without restriction, including without limitation the rights
|
|
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
|
copies of the Software, and to permit persons to whom the Software is
|
|
furnished to do so, subject to the following conditions:
|
|
|
|
The above copyright notice and this permission notice shall be included in all
|
|
copies or substantial portions of the Software.
|
|
|
|
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
|
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
|
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
|
SOFTWARE.
|
|
"""
|
|
from gym import core, spaces
|
|
|
|
try:
|
|
from dm_env import specs
|
|
except ImportError:
|
|
specs = None
|
|
try:
|
|
# Suppress MuJoCo warning (dm_control uses absl logging).
|
|
import absl.logging
|
|
|
|
absl.logging.set_verbosity("error")
|
|
from dm_control import suite
|
|
except (ImportError, OSError):
|
|
suite = None
|
|
import numpy as np
|
|
|
|
from ray.rllib.utils.annotations import PublicAPI
|
|
|
|
|
|
def _spec_to_box(spec):
|
|
def extract_min_max(s):
|
|
assert s.dtype == np.float64 or s.dtype == np.float32
|
|
dim = np.int(np.prod(s.shape))
|
|
if type(s) == specs.Array:
|
|
bound = np.inf * np.ones(dim, dtype=np.float32)
|
|
return -bound, bound
|
|
elif type(s) == specs.BoundedArray:
|
|
zeros = np.zeros(dim, dtype=np.float32)
|
|
return s.minimum + zeros, s.maximum + zeros
|
|
|
|
mins, maxs = [], []
|
|
for s in spec:
|
|
mn, mx = extract_min_max(s)
|
|
mins.append(mn)
|
|
maxs.append(mx)
|
|
low = np.concatenate(mins, axis=0)
|
|
high = np.concatenate(maxs, axis=0)
|
|
assert low.shape == high.shape
|
|
return spaces.Box(low, high, dtype=np.float32)
|
|
|
|
|
|
def _flatten_obs(obs):
|
|
obs_pieces = []
|
|
for v in obs.values():
|
|
flat = np.array([v]) if np.isscalar(v) else v.ravel()
|
|
obs_pieces.append(flat)
|
|
return np.concatenate(obs_pieces, axis=0)
|
|
|
|
|
|
@PublicAPI
|
|
class DMCEnv(core.Env):
|
|
def __init__(
|
|
self,
|
|
domain_name,
|
|
task_name,
|
|
task_kwargs=None,
|
|
visualize_reward=False,
|
|
from_pixels=False,
|
|
height=64,
|
|
width=64,
|
|
camera_id=0,
|
|
frame_skip=2,
|
|
environment_kwargs=None,
|
|
channels_first=True,
|
|
preprocess=True,
|
|
):
|
|
self._from_pixels = from_pixels
|
|
self._height = height
|
|
self._width = width
|
|
self._camera_id = camera_id
|
|
self._frame_skip = frame_skip
|
|
self._channels_first = channels_first
|
|
self.preprocess = preprocess
|
|
|
|
if specs is None:
|
|
raise RuntimeError(
|
|
(
|
|
"The `specs` module from `dm_env` was not imported. Make sure "
|
|
"`dm_env` is installed and visible in the current python "
|
|
"environment."
|
|
)
|
|
)
|
|
if suite is None:
|
|
raise RuntimeError(
|
|
(
|
|
"The `suite` module from `dm_control` was not imported. Make "
|
|
"sure `dm_control` is installed and visible in the current "
|
|
"python enviornment."
|
|
)
|
|
)
|
|
|
|
# create task
|
|
self._env = suite.load(
|
|
domain_name=domain_name,
|
|
task_name=task_name,
|
|
task_kwargs=task_kwargs,
|
|
visualize_reward=visualize_reward,
|
|
environment_kwargs=environment_kwargs,
|
|
)
|
|
|
|
# true and normalized action spaces
|
|
self._true_action_space = _spec_to_box([self._env.action_spec()])
|
|
self._norm_action_space = spaces.Box(
|
|
low=-1.0, high=1.0, shape=self._true_action_space.shape, dtype=np.float32
|
|
)
|
|
|
|
# create observation space
|
|
if from_pixels:
|
|
shape = [3, height, width] if channels_first else [height, width, 3]
|
|
self._observation_space = spaces.Box(
|
|
low=0, high=255, shape=shape, dtype=np.uint8
|
|
)
|
|
if preprocess:
|
|
self._observation_space = spaces.Box(
|
|
low=-0.5, high=0.5, shape=shape, dtype=np.float32
|
|
)
|
|
else:
|
|
self._observation_space = _spec_to_box(
|
|
self._env.observation_spec().values()
|
|
)
|
|
|
|
self._state_space = _spec_to_box(self._env.observation_spec().values())
|
|
|
|
self.current_state = None
|
|
|
|
def __getattr__(self, name):
|
|
return getattr(self._env, name)
|
|
|
|
def _get_obs(self, time_step):
|
|
if self._from_pixels:
|
|
obs = self.render(
|
|
height=self._height, width=self._width, camera_id=self._camera_id
|
|
)
|
|
if self._channels_first:
|
|
obs = obs.transpose(2, 0, 1).copy()
|
|
if self.preprocess:
|
|
obs = obs / 255.0 - 0.5
|
|
else:
|
|
obs = _flatten_obs(time_step.observation)
|
|
return obs
|
|
|
|
def _convert_action(self, action):
|
|
action = action.astype(np.float64)
|
|
true_delta = self._true_action_space.high - self._true_action_space.low
|
|
norm_delta = self._norm_action_space.high - self._norm_action_space.low
|
|
action = (action - self._norm_action_space.low) / norm_delta
|
|
action = action * true_delta + self._true_action_space.low
|
|
action = action.astype(np.float32)
|
|
return action
|
|
|
|
@property
|
|
def observation_space(self):
|
|
return self._observation_space
|
|
|
|
@property
|
|
def state_space(self):
|
|
return self._state_space
|
|
|
|
@property
|
|
def action_space(self):
|
|
return self._norm_action_space
|
|
|
|
def step(self, action):
|
|
assert self._norm_action_space.contains(action)
|
|
action = self._convert_action(action)
|
|
assert self._true_action_space.contains(action)
|
|
reward = 0
|
|
extra = {"internal_state": self._env.physics.get_state().copy()}
|
|
|
|
for _ in range(self._frame_skip):
|
|
time_step = self._env.step(action)
|
|
reward += time_step.reward or 0
|
|
done = time_step.last()
|
|
if done:
|
|
break
|
|
obs = self._get_obs(time_step)
|
|
self.current_state = _flatten_obs(time_step.observation)
|
|
extra["discount"] = time_step.discount
|
|
return obs, reward, done, extra
|
|
|
|
def reset(self):
|
|
time_step = self._env.reset()
|
|
self.current_state = _flatten_obs(time_step.observation)
|
|
obs = self._get_obs(time_step)
|
|
return obs
|
|
|
|
def render(self, mode="rgb_array", height=None, width=None, camera_id=0):
|
|
assert mode == "rgb_array", "only support for rgb_array mode"
|
|
height = height or self._height
|
|
width = width or self._width
|
|
camera_id = camera_id or self._camera_id
|
|
return self._env.physics.render(height=height, width=width, camera_id=camera_id)
|