mirror of
https://github.com/vale981/ray
synced 2025-03-05 10:01:43 -05:00
285 lines
11 KiB
Python
285 lines
11 KiB
Python
from typing import (
|
|
List,
|
|
Tuple,
|
|
Union,
|
|
)
|
|
|
|
import logging
|
|
import ray
|
|
import numpy as np
|
|
from typing import Dict, Optional
|
|
|
|
|
|
from ray.rllib.algorithms.dreamer.utils import FreezeParameters, batchify_states
|
|
from ray.rllib.evaluation.episode import Episode
|
|
from ray.rllib.models.catalog import ModelCatalog
|
|
from ray.rllib.policy.policy import Policy
|
|
from ray.rllib.policy.sample_batch import SampleBatch
|
|
from ray.rllib.utils.framework import try_import_torch
|
|
from ray.rllib.utils.torch_utils import apply_grad_clipping
|
|
from ray.rllib.utils.typing import AgentID, TensorType
|
|
from ray.rllib.utils.annotations import override
|
|
from ray.rllib.models.action_dist import ActionDistribution
|
|
from ray.rllib.models.modelv2 import ModelV2
|
|
from ray.rllib.policy.torch_policy_v2 import TorchPolicyV2
|
|
|
|
torch, nn = try_import_torch()
|
|
if torch:
|
|
from torch import distributions as td
|
|
|
|
logger = logging.getLogger(__name__)
|
|
|
|
|
|
class DreamerTorchPolicy(TorchPolicyV2):
|
|
def __init__(self, observation_space, action_space, config):
|
|
|
|
config = dict(ray.rllib.algorithms.dreamer.DreamerConfig().to_dict(), **config)
|
|
|
|
TorchPolicyV2.__init__(
|
|
self,
|
|
observation_space,
|
|
action_space,
|
|
config,
|
|
max_seq_len=config["model"]["max_seq_len"],
|
|
)
|
|
|
|
# TODO: Don't require users to call this manually.
|
|
self._initialize_loss_from_dummy_batch()
|
|
|
|
@override(TorchPolicyV2)
|
|
def loss(
|
|
self, model: ModelV2, dist_class: ActionDistribution, train_batch: SampleBatch
|
|
) -> Union[TensorType, List[TensorType]]:
|
|
log_gif = False
|
|
if "log_gif" in train_batch:
|
|
log_gif = True
|
|
|
|
# This is the computation graph for workers (inner adaptation steps)
|
|
encoder_weights = list(self.model.encoder.parameters())
|
|
decoder_weights = list(self.model.decoder.parameters())
|
|
reward_weights = list(self.model.reward.parameters())
|
|
dynamics_weights = list(self.model.dynamics.parameters())
|
|
critic_weights = list(self.model.value.parameters())
|
|
model_weights = list(
|
|
encoder_weights + decoder_weights + reward_weights + dynamics_weights
|
|
)
|
|
device = (
|
|
torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
|
|
)
|
|
|
|
# PlaNET Model Loss
|
|
latent = self.model.encoder(train_batch["obs"])
|
|
post, prior = self.model.dynamics.observe(latent, train_batch["actions"])
|
|
features = self.model.dynamics.get_feature(post)
|
|
image_pred = self.model.decoder(features)
|
|
reward_pred = self.model.reward(features)
|
|
image_loss = -torch.mean(image_pred.log_prob(train_batch["obs"]))
|
|
reward_loss = -torch.mean(reward_pred.log_prob(train_batch["rewards"]))
|
|
prior_dist = self.model.dynamics.get_dist(prior[0], prior[1])
|
|
post_dist = self.model.dynamics.get_dist(post[0], post[1])
|
|
div = torch.mean(
|
|
torch.distributions.kl_divergence(post_dist, prior_dist).sum(dim=2)
|
|
)
|
|
div = torch.clamp(div, min=(self.config["free_nats"]))
|
|
model_loss = self.config["kl_coeff"] * div + reward_loss + image_loss
|
|
|
|
# Actor Loss
|
|
# [imagine_horizon, batch_length*batch_size, feature_size]
|
|
with torch.no_grad():
|
|
actor_states = [v.detach() for v in post]
|
|
with FreezeParameters(model_weights):
|
|
imag_feat = self.model.imagine_ahead(
|
|
actor_states, self.config["imagine_horizon"]
|
|
)
|
|
with FreezeParameters(model_weights + critic_weights):
|
|
reward = self.model.reward(imag_feat).mean
|
|
value = self.model.value(imag_feat).mean
|
|
pcont = self.config["gamma"] * torch.ones_like(reward)
|
|
|
|
# Similar to GAE-Lambda, calculate value targets
|
|
next_values = torch.cat([value[:-1][1:], value[-1][None]], dim=0)
|
|
inputs = reward[:-1] + pcont[:-1] * next_values * (1 - self.config["lambda"])
|
|
|
|
def agg_fn(x, y):
|
|
return y[0] + y[1] * self.config["lambda"] * x
|
|
|
|
last = value[-1]
|
|
returns = []
|
|
for i in reversed(range(len(inputs))):
|
|
last = agg_fn(last, [inputs[i], pcont[:-1][i]])
|
|
returns.append(last)
|
|
|
|
returns = list(reversed(returns))
|
|
returns = torch.stack(returns, dim=0)
|
|
discount_shape = pcont[:1].size()
|
|
discount = torch.cumprod(
|
|
torch.cat([torch.ones(*discount_shape).to(device), pcont[:-2]], dim=0),
|
|
dim=0,
|
|
)
|
|
actor_loss = -torch.mean(discount * returns)
|
|
|
|
# Critic Loss
|
|
with torch.no_grad():
|
|
val_feat = imag_feat.detach()[:-1]
|
|
target = returns.detach()
|
|
val_discount = discount.detach()
|
|
val_pred = self.model.value(val_feat)
|
|
critic_loss = -torch.mean(val_discount * val_pred.log_prob(target))
|
|
|
|
# Logging purposes
|
|
prior_ent = torch.mean(prior_dist.entropy())
|
|
post_ent = torch.mean(post_dist.entropy())
|
|
gif = None
|
|
if log_gif:
|
|
gif = log_summary(
|
|
train_batch["obs"],
|
|
train_batch["actions"],
|
|
latent,
|
|
image_pred,
|
|
self.model,
|
|
)
|
|
return_dict = {
|
|
"model_loss": model_loss,
|
|
"reward_loss": reward_loss,
|
|
"image_loss": image_loss,
|
|
"divergence": div,
|
|
"actor_loss": actor_loss,
|
|
"critic_loss": critic_loss,
|
|
"prior_ent": prior_ent,
|
|
"post_ent": post_ent,
|
|
}
|
|
if gif is not None:
|
|
return_dict["log_gif"] = gif
|
|
self.stats_dict = return_dict
|
|
|
|
loss_dict = self.stats_dict
|
|
|
|
return (
|
|
loss_dict["model_loss"],
|
|
loss_dict["actor_loss"],
|
|
loss_dict["critic_loss"],
|
|
)
|
|
|
|
@override(TorchPolicyV2)
|
|
def postprocess_trajectory(
|
|
self,
|
|
sample_batch: SampleBatch,
|
|
other_agent_batches: Optional[
|
|
Dict[AgentID, Tuple["Policy", SampleBatch]]
|
|
] = None,
|
|
episode: Optional["Episode"] = None,
|
|
) -> SampleBatch:
|
|
"""Batch format should be in the form of (s_t, a_(t-1), r_(t-1))
|
|
When t=0, the resetted obs is paired with action and reward of 0.
|
|
"""
|
|
obs = sample_batch[SampleBatch.OBS]
|
|
new_obs = sample_batch[SampleBatch.NEXT_OBS]
|
|
action = sample_batch[SampleBatch.ACTIONS]
|
|
reward = sample_batch[SampleBatch.REWARDS]
|
|
eps_ids = sample_batch[SampleBatch.EPS_ID]
|
|
|
|
act_shape = action.shape
|
|
act_reset = np.array([0.0] * act_shape[-1])[None]
|
|
rew_reset = np.array(0.0)[None]
|
|
obs_end = np.array(new_obs[act_shape[0] - 1])[None]
|
|
|
|
batch_obs = np.concatenate([obs, obs_end], axis=0)
|
|
batch_action = np.concatenate([act_reset, action], axis=0)
|
|
batch_rew = np.concatenate([rew_reset, reward], axis=0)
|
|
batch_eps_ids = np.concatenate([eps_ids, eps_ids[-1:]], axis=0)
|
|
|
|
new_batch = {
|
|
SampleBatch.OBS: batch_obs,
|
|
SampleBatch.REWARDS: batch_rew,
|
|
SampleBatch.ACTIONS: batch_action,
|
|
SampleBatch.EPS_ID: batch_eps_ids,
|
|
}
|
|
return SampleBatch(new_batch)
|
|
|
|
def stats_fn(self, train_batch):
|
|
return self.stats_dict
|
|
|
|
@override(TorchPolicyV2)
|
|
def optimizer(self):
|
|
model = self.model
|
|
encoder_weights = list(model.encoder.parameters())
|
|
decoder_weights = list(model.decoder.parameters())
|
|
reward_weights = list(model.reward.parameters())
|
|
dynamics_weights = list(model.dynamics.parameters())
|
|
actor_weights = list(model.actor.parameters())
|
|
critic_weights = list(model.value.parameters())
|
|
model_opt = torch.optim.Adam(
|
|
encoder_weights + decoder_weights + reward_weights + dynamics_weights,
|
|
lr=self.config["td_model_lr"],
|
|
)
|
|
actor_opt = torch.optim.Adam(actor_weights, lr=self.config["actor_lr"])
|
|
critic_opt = torch.optim.Adam(critic_weights, lr=self.config["critic_lr"])
|
|
|
|
return (model_opt, actor_opt, critic_opt)
|
|
|
|
def action_sampler_fn(policy, model, obs_batch, state_batches, explore, timestep):
|
|
"""Action sampler function has two phases. During the prefill phase,
|
|
actions are sampled uniformly [-1, 1]. During training phase, actions
|
|
are evaluated through DreamerPolicy and an additive gaussian is added
|
|
to incentivize exploration.
|
|
"""
|
|
obs = obs_batch["obs"]
|
|
bsize = obs.shape[0]
|
|
|
|
# Custom Exploration
|
|
if timestep <= policy.config["prefill_timesteps"]:
|
|
logp = None
|
|
# Random action in space [-1.0, 1.0]
|
|
eps = torch.rand(1, model.action_space.shape[0], device=obs.device)
|
|
action = 2.0 * eps - 1.0
|
|
state_batches = model.get_initial_state()
|
|
# batchify the intial states to match the batch size of the obs tensor
|
|
state_batches = batchify_states(state_batches, bsize, device=obs.device)
|
|
else:
|
|
# Weird RLlib Handling, this happens when env rests
|
|
if len(state_batches[0].size()) == 3:
|
|
# Very hacky, but works on all envs
|
|
state_batches = model.get_initial_state().to(device=obs.device)
|
|
# batchify the intial states to match the batch size of the obs tensor
|
|
state_batches = batchify_states(state_batches, bsize, device=obs.device)
|
|
action, logp, state_batches = model.policy(obs, state_batches, explore)
|
|
action = td.Normal(action, policy.config["explore_noise"]).sample()
|
|
action = torch.clamp(action, min=-1.0, max=1.0)
|
|
|
|
policy.global_timestep += policy.config["action_repeat"]
|
|
|
|
return action, logp, state_batches
|
|
|
|
def make_model(self):
|
|
|
|
model = ModelCatalog.get_model_v2(
|
|
self.observation_space,
|
|
self.action_space,
|
|
1,
|
|
self.config["dreamer_model"],
|
|
name="DreamerModel",
|
|
framework="torch",
|
|
)
|
|
|
|
self.model_variables = model.variables()
|
|
|
|
return model
|
|
|
|
def extra_grad_process(
|
|
self, optimizer: "torch.optim.Optimizer", loss: TensorType
|
|
) -> Dict[str, TensorType]:
|
|
return apply_grad_clipping(self, optimizer, loss)
|
|
|
|
|
|
# Creates gif
|
|
def log_summary(obs, action, embed, image_pred, model):
|
|
truth = obs[:6] + 0.5
|
|
recon = image_pred.mean[:6]
|
|
init, _ = model.dynamics.observe(embed[:6, :5], action[:6, :5])
|
|
init = [itm[:, -1] for itm in init]
|
|
prior = model.dynamics.imagine(action[:6, 5:], init)
|
|
openl = model.decoder(model.dynamics.get_feature(prior)).mean
|
|
|
|
mod = torch.cat([recon[:, :5] + 0.5, openl + 0.5], 1)
|
|
error = (mod - truth + 1.0) / 2.0
|
|
return torch.cat([truth, mod, error], 3)
|