ray/rllib/algorithms/dqn/dqn_tf_policy.py

486 lines
17 KiB
Python

"""TensorFlow policy class used for DQN"""
from typing import Dict
import gym
import numpy as np
import ray
from ray.rllib.algorithms.dqn.distributional_q_tf_model import DistributionalQTFModel
from ray.rllib.algorithms.simple_q.utils import Q_SCOPE, Q_TARGET_SCOPE
from ray.rllib.evaluation.postprocessing import adjust_nstep
from ray.rllib.models import ModelCatalog
from ray.rllib.models.modelv2 import ModelV2
from ray.rllib.models.tf.tf_action_dist import Categorical
from ray.rllib.policy.policy import Policy
from ray.rllib.policy.sample_batch import SampleBatch
from ray.rllib.policy.tf_mixins import LearningRateSchedule, TargetNetworkMixin
from ray.rllib.policy.tf_policy_template import build_tf_policy
from ray.rllib.utils.error import UnsupportedSpaceException
from ray.rllib.utils.exploration import ParameterNoise
from ray.rllib.utils.framework import try_import_tf
from ray.rllib.utils.numpy import convert_to_numpy
from ray.rllib.utils.tf_utils import (
huber_loss,
make_tf_callable,
minimize_and_clip,
reduce_mean_ignore_inf,
)
from ray.rllib.utils.typing import AlgorithmConfigDict, ModelGradients, TensorType
tf1, tf, tfv = try_import_tf()
# Importance sampling weights for prioritized replay
PRIO_WEIGHTS = "weights"
class QLoss:
def __init__(
self,
q_t_selected: TensorType,
q_logits_t_selected: TensorType,
q_tp1_best: TensorType,
q_dist_tp1_best: TensorType,
importance_weights: TensorType,
rewards: TensorType,
done_mask: TensorType,
gamma: float = 0.99,
n_step: int = 1,
num_atoms: int = 1,
v_min: float = -10.0,
v_max: float = 10.0,
):
if num_atoms > 1:
# Distributional Q-learning which corresponds to an entropy loss
z = tf.range(num_atoms, dtype=tf.float32)
z = v_min + z * (v_max - v_min) / float(num_atoms - 1)
# (batch_size, 1) * (1, num_atoms) = (batch_size, num_atoms)
r_tau = tf.expand_dims(rewards, -1) + gamma ** n_step * tf.expand_dims(
1.0 - done_mask, -1
) * tf.expand_dims(z, 0)
r_tau = tf.clip_by_value(r_tau, v_min, v_max)
b = (r_tau - v_min) / ((v_max - v_min) / float(num_atoms - 1))
lb = tf.floor(b)
ub = tf.math.ceil(b)
# indispensable judgement which is missed in most implementations
# when b happens to be an integer, lb == ub, so pr_j(s', a*) will
# be discarded because (ub-b) == (b-lb) == 0
floor_equal_ceil = tf.cast(tf.less(ub - lb, 0.5), tf.float32)
l_project = tf.one_hot(
tf.cast(lb, dtype=tf.int32), num_atoms
) # (batch_size, num_atoms, num_atoms)
u_project = tf.one_hot(
tf.cast(ub, dtype=tf.int32), num_atoms
) # (batch_size, num_atoms, num_atoms)
ml_delta = q_dist_tp1_best * (ub - b + floor_equal_ceil)
mu_delta = q_dist_tp1_best * (b - lb)
ml_delta = tf.reduce_sum(l_project * tf.expand_dims(ml_delta, -1), axis=1)
mu_delta = tf.reduce_sum(u_project * tf.expand_dims(mu_delta, -1), axis=1)
m = ml_delta + mu_delta
# Rainbow paper claims that using this cross entropy loss for
# priority is robust and insensitive to `prioritized_replay_alpha`
self.td_error = tf.nn.softmax_cross_entropy_with_logits(
labels=m, logits=q_logits_t_selected
)
self.loss = tf.reduce_mean(
self.td_error * tf.cast(importance_weights, tf.float32)
)
self.stats = {
# TODO: better Q stats for dist dqn
"mean_td_error": tf.reduce_mean(self.td_error),
}
else:
q_tp1_best_masked = (1.0 - done_mask) * q_tp1_best
# compute RHS of bellman equation
q_t_selected_target = rewards + gamma ** n_step * q_tp1_best_masked
# compute the error (potentially clipped)
self.td_error = q_t_selected - tf.stop_gradient(q_t_selected_target)
self.loss = tf.reduce_mean(
tf.cast(importance_weights, tf.float32) * huber_loss(self.td_error)
)
self.stats = {
"mean_q": tf.reduce_mean(q_t_selected),
"min_q": tf.reduce_min(q_t_selected),
"max_q": tf.reduce_max(q_t_selected),
"mean_td_error": tf.reduce_mean(self.td_error),
}
class ComputeTDErrorMixin:
"""Assign the `compute_td_error` method to the DQNTFPolicy
This allows us to prioritize on the worker side.
"""
def __init__(self):
@make_tf_callable(self.get_session(), dynamic_shape=True)
def compute_td_error(
obs_t, act_t, rew_t, obs_tp1, done_mask, importance_weights
):
# Do forward pass on loss to update td error attribute
build_q_losses(
self,
self.model,
None,
{
SampleBatch.CUR_OBS: tf.convert_to_tensor(obs_t),
SampleBatch.ACTIONS: tf.convert_to_tensor(act_t),
SampleBatch.REWARDS: tf.convert_to_tensor(rew_t),
SampleBatch.NEXT_OBS: tf.convert_to_tensor(obs_tp1),
SampleBatch.DONES: tf.convert_to_tensor(done_mask),
PRIO_WEIGHTS: tf.convert_to_tensor(importance_weights),
},
)
return self.q_loss.td_error
self.compute_td_error = compute_td_error
def build_q_model(
policy: Policy,
obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
config: AlgorithmConfigDict,
) -> ModelV2:
"""Build q_model and target_model for DQN
Args:
policy: The Policy, which will use the model for optimization.
obs_space (gym.spaces.Space): The policy's observation space.
action_space (gym.spaces.Space): The policy's action space.
config (AlgorithmConfigDict):
Returns:
ModelV2: The Model for the Policy to use.
Note: The target q model will not be returned, just assigned to
`policy.target_model`.
"""
if not isinstance(action_space, gym.spaces.Discrete):
raise UnsupportedSpaceException(
"Action space {} is not supported for DQN.".format(action_space)
)
if config["hiddens"]:
# try to infer the last layer size, otherwise fall back to 256
num_outputs = ([256] + list(config["model"]["fcnet_hiddens"]))[-1]
config["model"]["no_final_linear"] = True
else:
num_outputs = action_space.n
q_model = ModelCatalog.get_model_v2(
obs_space=obs_space,
action_space=action_space,
num_outputs=num_outputs,
model_config=config["model"],
framework="tf",
model_interface=DistributionalQTFModel,
name=Q_SCOPE,
num_atoms=config["num_atoms"],
dueling=config["dueling"],
q_hiddens=config["hiddens"],
use_noisy=config["noisy"],
v_min=config["v_min"],
v_max=config["v_max"],
sigma0=config["sigma0"],
# TODO(sven): Move option to add LayerNorm after each Dense
# generically into ModelCatalog.
add_layer_norm=isinstance(getattr(policy, "exploration", None), ParameterNoise)
or config["exploration_config"]["type"] == "ParameterNoise",
)
policy.target_model = ModelCatalog.get_model_v2(
obs_space=obs_space,
action_space=action_space,
num_outputs=num_outputs,
model_config=config["model"],
framework="tf",
model_interface=DistributionalQTFModel,
name=Q_TARGET_SCOPE,
num_atoms=config["num_atoms"],
dueling=config["dueling"],
q_hiddens=config["hiddens"],
use_noisy=config["noisy"],
v_min=config["v_min"],
v_max=config["v_max"],
sigma0=config["sigma0"],
# TODO(sven): Move option to add LayerNorm after each Dense
# generically into ModelCatalog.
add_layer_norm=isinstance(getattr(policy, "exploration", None), ParameterNoise)
or config["exploration_config"]["type"] == "ParameterNoise",
)
return q_model
def get_distribution_inputs_and_class(
policy: Policy, model: ModelV2, input_dict: SampleBatch, *, explore=True, **kwargs
):
q_vals = compute_q_values(
policy, model, input_dict, state_batches=None, explore=explore
)
q_vals = q_vals[0] if isinstance(q_vals, tuple) else q_vals
policy.q_values = q_vals
return policy.q_values, Categorical, [] # state-out
def build_q_losses(policy: Policy, model, _, train_batch: SampleBatch) -> TensorType:
"""Constructs the loss for DQNTFPolicy.
Args:
policy: The Policy to calculate the loss for.
model (ModelV2): The Model to calculate the loss for.
train_batch: The training data.
Returns:
TensorType: A single loss tensor.
"""
config = policy.config
# q network evaluation
q_t, q_logits_t, q_dist_t, _ = compute_q_values(
policy,
model,
SampleBatch({"obs": train_batch[SampleBatch.CUR_OBS]}),
state_batches=None,
explore=False,
)
# target q network evalution
q_tp1, q_logits_tp1, q_dist_tp1, _ = compute_q_values(
policy,
policy.target_model,
SampleBatch({"obs": train_batch[SampleBatch.NEXT_OBS]}),
state_batches=None,
explore=False,
)
if not hasattr(policy, "target_q_func_vars"):
policy.target_q_func_vars = policy.target_model.variables()
# q scores for actions which we know were selected in the given state.
one_hot_selection = tf.one_hot(
tf.cast(train_batch[SampleBatch.ACTIONS], tf.int32), policy.action_space.n
)
q_t_selected = tf.reduce_sum(q_t * one_hot_selection, 1)
q_logits_t_selected = tf.reduce_sum(
q_logits_t * tf.expand_dims(one_hot_selection, -1), 1
)
# compute estimate of best possible value starting from state at t + 1
if config["double_q"]:
(
q_tp1_using_online_net,
q_logits_tp1_using_online_net,
q_dist_tp1_using_online_net,
_,
) = compute_q_values(
policy,
model,
SampleBatch({"obs": train_batch[SampleBatch.NEXT_OBS]}),
state_batches=None,
explore=False,
)
q_tp1_best_using_online_net = tf.argmax(q_tp1_using_online_net, 1)
q_tp1_best_one_hot_selection = tf.one_hot(
q_tp1_best_using_online_net, policy.action_space.n
)
q_tp1_best = tf.reduce_sum(q_tp1 * q_tp1_best_one_hot_selection, 1)
q_dist_tp1_best = tf.reduce_sum(
q_dist_tp1 * tf.expand_dims(q_tp1_best_one_hot_selection, -1), 1
)
else:
q_tp1_best_one_hot_selection = tf.one_hot(
tf.argmax(q_tp1, 1), policy.action_space.n
)
q_tp1_best = tf.reduce_sum(q_tp1 * q_tp1_best_one_hot_selection, 1)
q_dist_tp1_best = tf.reduce_sum(
q_dist_tp1 * tf.expand_dims(q_tp1_best_one_hot_selection, -1), 1
)
policy.q_loss = QLoss(
q_t_selected,
q_logits_t_selected,
q_tp1_best,
q_dist_tp1_best,
train_batch[PRIO_WEIGHTS],
train_batch[SampleBatch.REWARDS],
tf.cast(train_batch[SampleBatch.DONES], tf.float32),
config["gamma"],
config["n_step"],
config["num_atoms"],
config["v_min"],
config["v_max"],
)
return policy.q_loss.loss
def adam_optimizer(
policy: Policy, config: AlgorithmConfigDict
) -> "tf.keras.optimizers.Optimizer":
if policy.config["framework"] in ["tf2", "tfe"]:
return tf.keras.optimizers.Adam(
learning_rate=policy.cur_lr, epsilon=config["adam_epsilon"]
)
else:
return tf1.train.AdamOptimizer(
learning_rate=policy.cur_lr, epsilon=config["adam_epsilon"]
)
def clip_gradients(
policy: Policy, optimizer: "tf.keras.optimizers.Optimizer", loss: TensorType
) -> ModelGradients:
if not hasattr(policy, "q_func_vars"):
policy.q_func_vars = policy.model.variables()
return minimize_and_clip(
optimizer,
loss,
var_list=policy.q_func_vars,
clip_val=policy.config["grad_clip"],
)
def build_q_stats(policy: Policy, batch) -> Dict[str, TensorType]:
return dict(
{
"cur_lr": tf.cast(policy.cur_lr, tf.float64),
},
**policy.q_loss.stats
)
def setup_mid_mixins(policy: Policy, obs_space, action_space, config) -> None:
LearningRateSchedule.__init__(policy, config["lr"], config["lr_schedule"])
ComputeTDErrorMixin.__init__(policy)
def setup_late_mixins(
policy: Policy,
obs_space: gym.spaces.Space,
action_space: gym.spaces.Space,
config: AlgorithmConfigDict,
) -> None:
TargetNetworkMixin.__init__(policy, obs_space, action_space, config)
def compute_q_values(
policy: Policy,
model: ModelV2,
input_batch: SampleBatch,
state_batches=None,
seq_lens=None,
explore=None,
is_training: bool = False,
):
config = policy.config
model_out, state = model(input_batch, state_batches or [], seq_lens)
if config["num_atoms"] > 1:
(
action_scores,
z,
support_logits_per_action,
logits,
dist,
) = model.get_q_value_distributions(model_out)
else:
(action_scores, logits, dist) = model.get_q_value_distributions(model_out)
if config["dueling"]:
state_score = model.get_state_value(model_out)
if config["num_atoms"] > 1:
support_logits_per_action_mean = tf.reduce_mean(
support_logits_per_action, 1
)
support_logits_per_action_centered = (
support_logits_per_action
- tf.expand_dims(support_logits_per_action_mean, 1)
)
support_logits_per_action = (
tf.expand_dims(state_score, 1) + support_logits_per_action_centered
)
support_prob_per_action = tf.nn.softmax(logits=support_logits_per_action)
value = tf.reduce_sum(input_tensor=z * support_prob_per_action, axis=-1)
logits = support_logits_per_action
dist = support_prob_per_action
else:
action_scores_mean = reduce_mean_ignore_inf(action_scores, 1)
action_scores_centered = action_scores - tf.expand_dims(
action_scores_mean, 1
)
value = state_score + action_scores_centered
else:
value = action_scores
return value, logits, dist, state
def postprocess_nstep_and_prio(
policy: Policy, batch: SampleBatch, other_agent=None, episode=None
) -> SampleBatch:
# N-step Q adjustments.
if policy.config["n_step"] > 1:
adjust_nstep(policy.config["n_step"], policy.config["gamma"], batch)
# Create dummy prio-weights (1.0) in case we don't have any in
# the batch.
if PRIO_WEIGHTS not in batch:
batch[PRIO_WEIGHTS] = np.ones_like(batch[SampleBatch.REWARDS])
# Prioritize on the worker side.
if batch.count > 0 and policy.config["replay_buffer_config"].get(
"worker_side_prioritization", False
):
td_errors = policy.compute_td_error(
batch[SampleBatch.OBS],
batch[SampleBatch.ACTIONS],
batch[SampleBatch.REWARDS],
batch[SampleBatch.NEXT_OBS],
batch[SampleBatch.DONES],
batch[PRIO_WEIGHTS],
)
# Retain compatibility with old-style Replay args
epsilon = policy.config.get("replay_buffer_config", {}).get(
"prioritized_replay_eps"
) or policy.config.get("prioritized_replay_eps")
if epsilon is None:
raise ValueError("prioritized_replay_eps not defined in config.")
new_priorities = np.abs(convert_to_numpy(td_errors)) + epsilon
batch[PRIO_WEIGHTS] = new_priorities
return batch
DQNTFPolicy = build_tf_policy(
name="DQNTFPolicy",
get_default_config=lambda: ray.rllib.algorithms.dqn.dqn.DEFAULT_CONFIG,
make_model=build_q_model,
action_distribution_fn=get_distribution_inputs_and_class,
loss_fn=build_q_losses,
stats_fn=build_q_stats,
postprocess_fn=postprocess_nstep_and_prio,
optimizer_fn=adam_optimizer,
compute_gradients_fn=clip_gradients,
extra_action_out_fn=lambda policy: {"q_values": policy.q_values},
extra_learn_fetches_fn=lambda policy: {"td_error": policy.q_loss.td_error},
before_loss_init=setup_mid_mixins,
after_init=setup_late_mixins,
mixins=[
TargetNetworkMixin,
ComputeTDErrorMixin,
LearningRateSchedule,
],
)