ray/rllib/algorithms/cql/tests/test_cql.py

150 lines
5.1 KiB
Python

import numpy as np
from pathlib import Path
import os
import unittest
import ray
from ray.rllib.algorithms import cql
from ray.rllib.utils.framework import try_import_tf, try_import_torch
from ray.rllib.utils.test_utils import (
check_compute_single_action,
check_train_results,
framework_iterator,
)
tf1, tf, tfv = try_import_tf()
torch, _ = try_import_torch()
class TestCQL(unittest.TestCase):
@classmethod
def setUpClass(cls):
ray.init()
@classmethod
def tearDownClass(cls):
ray.shutdown()
def test_cql_compilation(self):
"""Test whether CQL can be built with all frameworks."""
# Learns from a historic-data file.
# To generate this data, first run:
# $ ./train.py --run=SAC --env=Pendulum-v1 \
# --stop='{"timesteps_total": 50000}' \
# --config='{"output": "/tmp/out"}'
rllib_dir = Path(__file__).parent.parent.parent.parent
print("rllib dir={}".format(rllib_dir))
data_file = os.path.join(rllib_dir, "tests/data/pendulum/small.json")
print("data_file={} exists={}".format(data_file, os.path.isfile(data_file)))
config = (
cql.CQLConfig()
.environment(
env="Pendulum-v1",
)
.offline_data(
input_=data_file,
# In the files, we use here for testing, actions have already
# been normalized.
# This is usually the case when the file was generated by another
# RLlib algorithm (e.g. PPO or SAC).
actions_in_input_normalized=False,
)
.training(
clip_actions=False,
train_batch_size=2000,
twin_q=True,
num_steps_sampled_before_learning_starts=0,
bc_iters=2,
)
.evaluation(
always_attach_evaluation_results=True,
evaluation_interval=2,
evaluation_duration=10,
evaluation_config={"input": "sampler"},
evaluation_parallel_to_training=False,
evaluation_num_workers=2,
)
.rollouts(num_rollout_workers=0)
.reporting(min_time_s_per_iteration=0.0)
)
num_iterations = 4
# Test for tf/torch frameworks.
for fw in framework_iterator(config, with_eager_tracing=True):
trainer = config.build()
for i in range(num_iterations):
results = trainer.train()
check_train_results(results)
print(results)
eval_results = results["evaluation"]
print(
f"iter={trainer.iteration} "
f"R={eval_results['episode_reward_mean']}"
)
check_compute_single_action(trainer)
# Get policy and model.
pol = trainer.get_policy()
cql_model = pol.model
if fw == "tf":
pol.get_session().__enter__()
# Example on how to do evaluation on the trained Trainer
# using the data from CQL's global replay buffer.
# Get a sample (MultiAgentBatch).
batch = trainer.workers.local_worker().input_reader.next()
multi_agent_batch = batch.as_multi_agent()
# All experiences have been buffered for `default_policy`
batch = multi_agent_batch.policy_batches["default_policy"]
if fw == "torch":
obs = torch.from_numpy(batch["obs"])
else:
obs = batch["obs"]
batch["actions"] = batch["actions"].astype(np.float32)
# Pass the observations through our model to get the
# features, which then to pass through the Q-head.
model_out, _ = cql_model({"obs": obs})
# The estimated Q-values from the (historic) actions in the batch.
if fw == "torch":
q_values_old = cql_model.get_q_values(
model_out, torch.from_numpy(batch["actions"])
)
else:
q_values_old = cql_model.get_q_values(
tf.convert_to_tensor(model_out), batch["actions"]
)
# The estimated Q-values for the new actions computed
# by our trainer policy.
actions_new = pol.compute_actions_from_input_dict({"obs": obs})[0]
if fw == "torch":
q_values_new = cql_model.get_q_values(
model_out, torch.from_numpy(actions_new)
)
else:
q_values_new = cql_model.get_q_values(model_out, actions_new)
if fw == "tf":
q_values_old, q_values_new = pol.get_session().run(
[q_values_old, q_values_new]
)
print(f"Q-val batch={q_values_old}")
print(f"Q-val policy={q_values_new}")
if fw == "tf":
pol.get_session().__exit__(None, None, None)
trainer.stop()
if __name__ == "__main__":
import pytest
import sys
sys.exit(pytest.main(["-v", __file__]))