ray/release/serve_tests/workloads/deployment_graph_wide_ensemble.py

189 lines
5.3 KiB
Python

"""
Test that focuses on wide fanout of deployment graph
-> Node_1
/ \
INPUT --> Node_2 --> combine -> OUTPUT
\ ... /
-> Node_10
1) Intermediate blob size can be large / small
2) Compute time each node can be long / short
3) Init time can be long / short
"""
import time
import asyncio
import click
from typing import Optional
import ray
from ray import serve
from ray.dag import InputNode
from ray.serve.drivers import DAGDriver
from serve_test_cluster_utils import (
setup_local_single_node_cluster,
setup_anyscale_cluster,
)
from serve_test_utils import save_test_results
from benchmark_utils import benchmark_throughput_tps, benchmark_latency_ms
DEFAULT_FANOUT_DEGREE = 4
DEFAULT_NUM_REQUESTS_PER_CLIENT = 20 # request sent for latency test
DEFAULT_NUM_CLIENTS = 1 # Clients concurrently sending request to deployment
DEFAULT_THROUGHPUT_TRIAL_DURATION_SECS = 10
@serve.deployment
class Node:
def __init__(self, id: int, init_delay_secs=0):
time.sleep(init_delay_secs)
self.id = id
async def compute(self, input_data, compute_delay_secs=0):
await asyncio.sleep(compute_delay_secs)
return input_data + self.id
@serve.deployment
def combine(value_refs):
return sum(ray.get(value_refs))
def test_wide_fanout_deployment_graph(
fanout_degree, init_delay_secs=0, compute_delay_secs=0
):
"""
Test that focuses on wide fanout of deployment graph
-> Node_1
/ \
INPUT --> Node_2 --> combine -> OUTPUT
\ ... /
-> Node_10
1) Intermediate blob size can be large / small
2) Compute time each node can be long / short
3) Init time can be long / short
"""
nodes = [
Node.bind(i, init_delay_secs=init_delay_secs) for i in range(0, fanout_degree)
]
outputs = []
with InputNode() as user_input:
for i in range(0, fanout_degree):
outputs.append(
nodes[i].compute.bind(user_input, compute_delay_secs=compute_delay_secs)
)
dag = combine.bind(outputs)
serve_dag = DAGDriver.bind(dag)
return serve_dag
@click.command()
@click.option("--fanout-degree", type=int, default=DEFAULT_FANOUT_DEGREE)
@click.option("--init-delay-secs", type=int, default=0)
@click.option("--compute-delay-secs", type=int, default=0)
@click.option(
"--num-requests-per-client",
type=int,
default=DEFAULT_NUM_REQUESTS_PER_CLIENT,
)
@click.option("--num-clients", type=int, default=DEFAULT_NUM_CLIENTS)
@click.option(
"--throughput-trial-duration-secs",
type=int,
default=DEFAULT_THROUGHPUT_TRIAL_DURATION_SECS,
)
@click.option("--local-test", type=bool, default=True)
def main(
fanout_degree: Optional[int],
init_delay_secs: Optional[int],
compute_delay_secs: Optional[int],
num_requests_per_client: Optional[int],
num_clients: Optional[int],
throughput_trial_duration_secs: Optional[int],
local_test: Optional[bool],
):
if local_test:
setup_local_single_node_cluster(1, num_cpu_per_node=8)
else:
setup_anyscale_cluster()
serve_dag = test_wide_fanout_deployment_graph(
fanout_degree,
init_delay_secs=init_delay_secs,
compute_delay_secs=compute_delay_secs,
)
dag_handle = serve.run(serve_dag)
# 0 + 1 + 2 + 3 + 4 + ... + (fanout_degree - 1)
expected = ((0 + fanout_degree - 1) * fanout_degree) / 2
assert ray.get(dag_handle.predict.remote(0)) == expected
loop = asyncio.get_event_loop()
throughput_mean_tps, throughput_std_tps = loop.run_until_complete(
benchmark_throughput_tps(
dag_handle,
expected,
duration_secs=throughput_trial_duration_secs,
num_clients=num_clients,
)
)
latency_mean_ms, latency_std_ms = loop.run_until_complete(
benchmark_latency_ms(
dag_handle,
expected,
num_requests=num_requests_per_client,
num_clients=num_clients,
)
)
print(f"fanout_degree: {fanout_degree}, num_clients: {num_clients}")
print(f"latency_mean_ms: {latency_mean_ms}, " f"latency_std_ms: {latency_std_ms}")
print(
f"throughput_mean_tps: {throughput_mean_tps}, "
f"throughput_std_tps: {throughput_std_tps}"
)
results = {
"fanout_degree": fanout_degree,
"init_delay_secs": init_delay_secs,
"compute_delay_secs": compute_delay_secs,
"local_test": local_test,
}
results["perf_metrics"] = [
{
"perf_metric_name": "throughput_mean_tps",
"perf_metric_value": throughput_mean_tps,
"perf_metric_type": "THROUGHPUT",
},
{
"perf_metric_name": "throughput_std_tps",
"perf_metric_value": throughput_std_tps,
"perf_metric_type": "THROUGHPUT",
},
{
"perf_metric_name": "latency_mean_ms",
"perf_metric_value": latency_mean_ms,
"perf_metric_type": "LATENCY",
},
{
"perf_metric_name": "latency_std_ms",
"perf_metric_value": latency_std_ms,
"perf_metric_type": "LATENCY",
},
]
save_test_results(results)
if __name__ == "__main__":
main()
import sys
import pytest
sys.exit(pytest.main(["-v", "-s", __file__]))