ray/release/serve_tests/workloads/autoscaling_multi_deployment.py

215 lines
7.5 KiB
Python

#!/usr/bin/env python3
"""
Benchmark test for multi deployment with autoscaling at up to 1k no-op replica
scale.
1) Start with a single head node.
2) Start 10 deployments each with up to 100 no-op replicas
3) Launch wrk in each running node to simulate load balanced request
4) Recursively send queries to random deployments, up to depth=5
5) Run a 10-minute wrk trial on each node, aggregate results.
Report:
per_thread_latency_avg_ms
per_thread_latency_max_ms
per_thread_avg_tps
per_thread_max_tps
per_node_avg_tps
per_node_avg_transfer_per_sec_KB
cluster_total_thoughput
cluster_total_transfer_KB
cluster_max_P50_latency_ms
cluster_max_P75_latency_ms
cluster_max_P90_latency_ms
cluster_max_P99_latency_ms
"""
import click
import logging
import math
import random
import ray
from ray import serve
from serve_test_utils import (
aggregate_all_metrics,
run_wrk_on_all_nodes,
save_test_results,
is_smoke_test,
)
from serve_test_cluster_utils import (
setup_local_single_node_cluster,
setup_anyscale_cluster,
warm_up_one_cluster,
NUM_CPU_PER_NODE,
NUM_CONNECTIONS,
)
from typing import Optional
logger = logging.getLogger(__file__)
# Experiment configs
DEFAULT_SMOKE_TEST_MIN_NUM_REPLICA = 0
DEFAULT_SMOKE_TEST_MAX_NUM_REPLICA = 8
DEFAULT_SMOKE_TEST_NUM_DEPLOYMENTS = 4 # 2 replicas each
# TODO:(jiaodong) We should investigate and change this back to 1k
# for now, we won't get valid latency numbers from wrk at 1k replica
# likely due to request timeout.
DEFAULT_FULL_TEST_MIN_NUM_REPLICA = 0
DEFAULT_FULL_TEST_MAX_NUM_REPLICA = 1000
# TODO(simon): we should change this back to 100. But due to long poll issue
# we temporarily downscoped this test.
# https://github.com/ray-project/ray/pull/20270
DEFAULT_FULL_TEST_NUM_DEPLOYMENTS = 10 # 100 replicas each
# Experiment configs - wrk specific
DEFAULT_SMOKE_TEST_TRIAL_LENGTH = "15s"
DEFAULT_FULL_TEST_TRIAL_LENGTH = "10m"
def setup_multi_deployment_replicas(min_replicas, max_replicas, num_deployments):
max_replicas_per_deployment = max_replicas // num_deployments
all_deployment_names = [f"Echo_{i+1}" for i in range(num_deployments)]
@serve.deployment(
autoscaling_config={
"metrics_interval_s": 0.1,
"min_replicas": min_replicas,
"max_replicas": max_replicas_per_deployment,
"look_back_period_s": 0.2,
"downscale_delay_s": 0.2,
"upscale_delay_s": 0.2,
},
version="v1",
)
class Echo:
def __init__(self):
self.all_deployment_async_handles = []
def get_random_async_handle(self):
# sync get_handle() and expected to be called only a few times
# during deployment warmup so each deployment has reference to
# all other handles to send recursive inference call
if len(self.all_deployment_async_handles) < len(all_deployment_names):
deployments = list(serve.list_deployments().values())
self.all_deployment_async_handles = [
deployment.get_handle(sync=False) for deployment in deployments
]
return random.choice(self.all_deployment_async_handles)
async def handle_request(self, request, depth: int):
# Max recursive call depth reached
if depth > 4:
return "hi"
next_async_handle = self.get_random_async_handle()
obj_ref = await next_async_handle.handle_request.remote(request, depth + 1)
return await obj_ref
async def __call__(self, request):
return await self.handle_request(request, 0)
for deployment in all_deployment_names:
Echo.options(name=deployment).deploy()
@click.command()
@click.option("--min-replicas", "-min", type=int)
@click.option("--max-replicas", "-max", type=int)
@click.option("--num-deployments", "-nd", type=int)
@click.option("--trial-length", "-tl", type=str)
def main(
min_replicas: Optional[int],
max_replicas: Optional[int],
num_deployments: Optional[int],
trial_length: Optional[str],
):
# Give default cluster parameter values based on smoke_test config
# if user provided values explicitly, use them instead.
# IS_SMOKE_TEST is set by args of releaser's e2e.py
if is_smoke_test():
min_replicas = min_replicas or DEFAULT_SMOKE_TEST_MIN_NUM_REPLICA
max_replicas = max_replicas or DEFAULT_SMOKE_TEST_MAX_NUM_REPLICA
num_deployments = num_deployments or DEFAULT_SMOKE_TEST_NUM_DEPLOYMENTS
trial_length = trial_length or DEFAULT_SMOKE_TEST_TRIAL_LENGTH
logger.info(
f"Running smoke test with min {min_replicas} and max "
f"{max_replicas} replicas, {num_deployments} deployments "
f".. \n"
)
# Choose cluster setup based on user config. Local test uses Cluster()
# to mock actors that requires # of nodes to be specified, but ray
# client doesn't need to
num_nodes = int(math.ceil(max_replicas / NUM_CPU_PER_NODE))
logger.info(f"Setting up local ray cluster with {num_nodes} nodes .. \n")
serve_client = setup_local_single_node_cluster(num_nodes)[0]
else:
min_replicas = min_replicas or DEFAULT_FULL_TEST_MIN_NUM_REPLICA
max_replicas = max_replicas or DEFAULT_FULL_TEST_MAX_NUM_REPLICA
num_deployments = num_deployments or DEFAULT_FULL_TEST_NUM_DEPLOYMENTS
trial_length = trial_length or DEFAULT_FULL_TEST_TRIAL_LENGTH
logger.info(
f"Running full test with min {min_replicas} and max "
f"{max_replicas} replicas, {num_deployments} deployments "
f".. \n"
)
logger.info("Setting up anyscale ray cluster .. \n")
serve_client = setup_anyscale_cluster()
http_host = str(serve_client._http_config.host)
http_port = str(serve_client._http_config.port)
logger.info(f"Ray serve http_host: {http_host}, http_port: {http_port}")
logger.info(
f"Deploying with min {min_replicas} and max {max_replicas}"
f"target replicas ....\n"
)
setup_multi_deployment_replicas(min_replicas, max_replicas, num_deployments)
logger.info("Warming up cluster ....\n")
endpoint_refs = []
all_endpoints = list(serve.list_deployments().keys())
for endpoint in all_endpoints:
endpoint_refs.append(
warm_up_one_cluster.options(num_cpus=0).remote(
10, http_host, http_port, endpoint
)
)
for endpoint in ray.get(endpoint_refs):
logger.info(f"Finished warming up {endpoint}")
logger.info(f"Starting wrk trial on all nodes for {trial_length} ....\n")
# For detailed discussion, see https://github.com/wg/wrk/issues/205
# TODO:(jiaodong) What's the best number to use here ?
all_metrics, all_wrk_stdout = run_wrk_on_all_nodes(
trial_length,
NUM_CONNECTIONS,
http_host,
http_port,
all_endpoints=all_endpoints,
debug=True,
)
aggregated_metrics = aggregate_all_metrics(all_metrics)
logger.info("Wrk stdout on each node: ")
for wrk_stdout in all_wrk_stdout:
logger.info(wrk_stdout)
logger.info("Final aggregated metrics: ")
for key, val in aggregated_metrics.items():
logger.info(f"{key}: {val}")
save_test_results(
aggregated_metrics, default_output_file="/tmp/autoscaling_multi_deployment.json"
)
if __name__ == "__main__":
main()
import pytest
import sys
sys.exit(pytest.main(["-v", "-s", __file__]))