mirror of
https://github.com/vale981/ray
synced 2025-03-05 10:01:43 -05:00

Enable checking of the ray core module, excluding serve, workflows, and tune, in ./ci/lint/check_api_annotations.py. This required moving many files to ray._private and associated fixes.
165 lines
4.8 KiB
Python
165 lines
4.8 KiB
Python
import json
|
|
import os
|
|
import resource
|
|
import time
|
|
from typing import List
|
|
|
|
import numpy as np
|
|
import psutil
|
|
|
|
import ray
|
|
from ray._private.internal_api import memory_summary
|
|
from ray.data._internal.arrow_block import ArrowRow
|
|
from ray.data._internal.util import _check_pyarrow_version
|
|
from ray.data.block import Block, BlockMetadata
|
|
from ray.data.context import DatasetContext
|
|
from ray.data.datasource import Datasource, ReadTask
|
|
|
|
|
|
class RandomIntRowDatasource(Datasource[ArrowRow]):
|
|
"""An example datasource that generates rows with random int64 columns.
|
|
|
|
Examples:
|
|
>>> source = RandomIntRowDatasource()
|
|
>>> ray.data.read_datasource(source, n=10, num_columns=2).take()
|
|
... {'c_0': 1717767200176864416, 'c_1': 999657309586757214}
|
|
... {'c_0': 4983608804013926748, 'c_1': 1160140066899844087}
|
|
"""
|
|
|
|
def prepare_read(
|
|
self, parallelism: int, n: int, num_columns: int
|
|
) -> List[ReadTask]:
|
|
_check_pyarrow_version()
|
|
import pyarrow
|
|
|
|
read_tasks: List[ReadTask] = []
|
|
block_size = max(1, n // parallelism)
|
|
|
|
def make_block(count: int, num_columns: int) -> Block:
|
|
return pyarrow.Table.from_arrays(
|
|
np.random.randint(
|
|
np.iinfo(np.int64).max, size=(num_columns, count), dtype=np.int64
|
|
),
|
|
names=[f"c_{i}" for i in range(num_columns)],
|
|
)
|
|
|
|
schema = pyarrow.Table.from_pydict(
|
|
{f"c_{i}": [0] for i in range(num_columns)}
|
|
).schema
|
|
|
|
i = 0
|
|
while i < n:
|
|
count = min(block_size, n - i)
|
|
meta = BlockMetadata(
|
|
num_rows=count,
|
|
size_bytes=8 * count * num_columns,
|
|
schema=schema,
|
|
input_files=None,
|
|
exec_stats=None,
|
|
)
|
|
read_tasks.append(
|
|
ReadTask(
|
|
lambda count=count, num_columns=num_columns: [
|
|
make_block(count, num_columns)
|
|
],
|
|
meta,
|
|
)
|
|
)
|
|
i += block_size
|
|
|
|
return read_tasks
|
|
|
|
|
|
if __name__ == "__main__":
|
|
import argparse
|
|
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--num-partitions", help="number of partitions", default="50", type=str
|
|
)
|
|
parser.add_argument(
|
|
"--partition-size",
|
|
help="partition size (bytes)",
|
|
default="200e6",
|
|
type=str,
|
|
)
|
|
parser.add_argument(
|
|
"--shuffle", help="shuffle instead of sort", action="store_true"
|
|
)
|
|
parser.add_argument("--use-polars", action="store_true")
|
|
|
|
args = parser.parse_args()
|
|
|
|
if args.use_polars and not args.shuffle:
|
|
print("Using polars for sort")
|
|
ctx = DatasetContext.get_current()
|
|
ctx.use_polars = True
|
|
|
|
num_partitions = int(args.num_partitions)
|
|
partition_size = int(float(args.partition_size))
|
|
print(
|
|
f"Dataset size: {num_partitions} partitions, "
|
|
f"{partition_size / 1e9}GB partition size, "
|
|
f"{num_partitions * partition_size / 1e9}GB total"
|
|
)
|
|
start_time = time.time()
|
|
source = RandomIntRowDatasource()
|
|
num_rows_per_partition = partition_size // 8
|
|
ds = ray.data.read_datasource(
|
|
source,
|
|
parallelism=num_partitions,
|
|
n=num_rows_per_partition * num_partitions,
|
|
num_columns=1,
|
|
)
|
|
exc = None
|
|
try:
|
|
if args.shuffle:
|
|
ds = ds.random_shuffle()
|
|
else:
|
|
ds = ds.sort(key="c_0")
|
|
except Exception as e:
|
|
exc = e
|
|
pass
|
|
|
|
end_time = time.time()
|
|
|
|
duration = end_time - start_time
|
|
print("Finished in", duration)
|
|
print("")
|
|
|
|
print("==== Driver memory summary ====")
|
|
maxrss = int(resource.getrusage(resource.RUSAGE_SELF).ru_maxrss * 1e3)
|
|
print(f"max: {maxrss / 1e9}/GB")
|
|
process = psutil.Process(os.getpid())
|
|
rss = int(process.memory_info().rss)
|
|
print(f"rss: {rss / 1e9}/GB")
|
|
|
|
print(memory_summary(stats_only=True))
|
|
print("")
|
|
|
|
print(ds.stats())
|
|
|
|
if "TEST_OUTPUT_JSON" in os.environ:
|
|
out_file = open(os.environ["TEST_OUTPUT_JSON"], "w")
|
|
results = {
|
|
"time": duration,
|
|
"success": "1" if exc is None else "0",
|
|
"num_partitions": num_partitions,
|
|
"partition_size": partition_size,
|
|
"perf_metrics": [
|
|
{
|
|
"perf_metric_name": "peak_driver_memory",
|
|
"perf_metric_value": maxrss,
|
|
"perf_metric_type": "MEMORY",
|
|
},
|
|
{
|
|
"perf_metric_name": "runtime",
|
|
"perf_metric_value": duration,
|
|
"perf_metric_type": "LATENCY",
|
|
},
|
|
],
|
|
}
|
|
json.dump(results, out_file)
|
|
|
|
if exc:
|
|
raise exc
|