ray/dashboard/modules/reporter/reporter_agent.py
Yi Cheng dac7bf17d9
[serve] Make serve agent not blocking when GCS is down. (#27526)
This PR fixed several issue which block serve agent when GCS is down. We need to make sure serve agent is always alive and can make sure the external requests can be sent to the agent and check the status.

- internal kv used in dashboard/agent blocks the agent. We use the async one instead
- serve controller use ray.nodes which is a blocking call and blocking forever. change to use gcs client with timeout
- agent use serve controller client which is a blocking call with max retries = -1. This blocks until controller is back.

To enable Serve HA, we also need to setup:

- RAY_gcs_server_request_timeout_seconds=5
- RAY_SERVE_KV_TIMEOUT_S=5

which we should set in KubeRay.
2022-08-08 16:29:42 -07:00

820 lines
29 KiB
Python

import asyncio
import datetime
import json
import logging
import os
import socket
import subprocess
import sys
import traceback
import warnings
import psutil
import ray
import ray._private.services
import ray._private.utils
from ray.dashboard.consts import GCS_RPC_TIMEOUT_SECONDS
import ray.dashboard.modules.reporter.reporter_consts as reporter_consts
import ray.dashboard.utils as dashboard_utils
from ray._private.metrics_agent import Gauge, MetricsAgent, Record
from ray._private.ray_constants import DEBUG_AUTOSCALING_STATUS
from ray.core.generated import reporter_pb2, reporter_pb2_grpc
from ray.dashboard import k8s_utils
from ray.util.debug import log_once
logger = logging.getLogger(__name__)
enable_gpu_usage_check = True
# Are we in a K8s pod?
IN_KUBERNETES_POD = "KUBERNETES_SERVICE_HOST" in os.environ
# Flag to enable showing disk usage when running in a K8s pod,
# disk usage defined as the result of running psutil.disk_usage("/")
# in the Ray container.
ENABLE_K8S_DISK_USAGE = os.environ.get("RAY_DASHBOARD_ENABLE_K8S_DISK_USAGE") == "1"
# Try to determine if we're in a container.
IN_CONTAINER = os.path.exists("/sys/fs/cgroup")
# Using existence of /sys/fs/cgroup as the criterion is consistent with
# Ray's existing resource logic, see e.g. ray._private.utils.get_num_cpus().
try:
import gpustat.core as gpustat
except (ModuleNotFoundError, ImportError):
gpustat = None
if log_once("gpustat_import_warning"):
warnings.warn(
"`gpustat` package is not installed. GPU monitoring is "
"not available. To have full functionality of the "
"dashboard please install `pip install ray["
"default]`.)"
)
def recursive_asdict(o):
if isinstance(o, tuple) and hasattr(o, "_asdict"):
return recursive_asdict(o._asdict())
if isinstance(o, (tuple, list)):
L = []
for k in o:
L.append(recursive_asdict(k))
return L
if isinstance(o, dict):
D = {k: recursive_asdict(v) for k, v in o.items()}
return D
return o
def jsonify_asdict(o) -> str:
return json.dumps(dashboard_utils.to_google_style(recursive_asdict(o)))
# A list of gauges to record and export metrics.
METRICS_GAUGES = {
"node_cpu_utilization": Gauge(
"node_cpu_utilization", "Total CPU usage on a ray node", "percentage", ["ip"]
),
"node_cpu_count": Gauge(
"node_cpu_count", "Total CPUs available on a ray node", "cores", ["ip"]
),
"node_mem_used": Gauge(
"node_mem_used", "Memory usage on a ray node", "bytes", ["ip"]
),
"node_mem_available": Gauge(
"node_mem_available", "Memory available on a ray node", "bytes", ["ip"]
),
"node_mem_total": Gauge(
"node_mem_total", "Total memory on a ray node", "bytes", ["ip"]
),
"node_gpus_available": Gauge(
"node_gpus_available",
"Total GPUs available on a ray node",
"percentage",
["ip"],
),
"node_gpus_utilization": Gauge(
"node_gpus_utilization", "Total GPUs usage on a ray node", "percentage", ["ip"]
),
"node_gram_used": Gauge(
"node_gram_used", "Total GPU RAM usage on a ray node", "bytes", ["ip"]
),
"node_gram_available": Gauge(
"node_gram_available", "Total GPU RAM available on a ray node", "bytes", ["ip"]
),
"node_disk_io_read": Gauge(
"node_disk_io_read", "Total read from disk", "bytes", ["ip"]
),
"node_disk_io_write": Gauge(
"node_disk_io_write", "Total written to disk", "bytes", ["ip"]
),
"node_disk_io_read_count": Gauge(
"node_disk_io_read_count", "Total read ops from disk", "io", ["ip"]
),
"node_disk_io_write_count": Gauge(
"node_disk_io_write_count", "Total write ops to disk", "io", ["ip"]
),
"node_disk_io_read_speed": Gauge(
"node_disk_io_read_speed", "Disk read speed", "bytes/sec", ["ip"]
),
"node_disk_io_write_speed": Gauge(
"node_disk_io_write_speed", "Disk write speed", "bytes/sec", ["ip"]
),
"node_disk_read_iops": Gauge(
"node_disk_read_iops", "Disk read iops", "iops", ["ip"]
),
"node_disk_write_iops": Gauge(
"node_disk_write_iops", "Disk write iops", "iops", ["ip"]
),
"node_disk_usage": Gauge(
"node_disk_usage", "Total disk usage (bytes) on a ray node", "bytes", ["ip"]
),
"node_disk_free": Gauge(
"node_disk_free", "Total disk free (bytes) on a ray node", "bytes", ["ip"]
),
"node_disk_utilization_percentage": Gauge(
"node_disk_utilization_percentage",
"Total disk utilization (percentage) on a ray node",
"percentage",
["ip"],
),
"node_network_sent": Gauge(
"node_network_sent", "Total network sent", "bytes", ["ip"]
),
"node_network_received": Gauge(
"node_network_received", "Total network received", "bytes", ["ip"]
),
"node_network_send_speed": Gauge(
"node_network_send_speed", "Network send speed", "bytes/sec", ["ip"]
),
"node_network_receive_speed": Gauge(
"node_network_receive_speed", "Network receive speed", "bytes/sec", ["ip"]
),
"raylet_cpu": Gauge(
"raylet_cpu", "CPU usage of the raylet on a node.", "percentage", ["ip", "pid"]
),
"raylet_mem": Gauge(
"raylet_mem",
"RSS usage of the Raylet on the node.",
"MB",
["ip", "pid"],
),
"raylet_mem_uss": Gauge(
"raylet_mem_uss",
"USS usage of the Raylet on the node. Only available on Linux",
"MB",
["ip", "pid"],
),
"workers_cpu": Gauge(
"workers_cpu",
"Total CPU usage of all workers on a node.",
"percentage",
["ip"],
),
"workers_mem": Gauge(
"workers_mem",
"RSS usage of all workers on the node.",
"MB",
["ip"],
),
"workers_mem_uss": Gauge(
"workers_mem_uss",
"USS usage of all workers on the node. Only available on Linux",
"MB",
["ip"],
),
"cluster_active_nodes": Gauge(
"cluster_active_nodes", "Active nodes on the cluster", "count", ["node_type"]
),
"cluster_failed_nodes": Gauge(
"cluster_failed_nodes", "Failed nodes on the cluster", "count", ["node_type"]
),
"cluster_pending_nodes": Gauge(
"cluster_pending_nodes", "Pending nodes on the cluster", "count", ["node_type"]
),
}
class ReporterAgent(
dashboard_utils.DashboardAgentModule, reporter_pb2_grpc.ReporterServiceServicer
):
"""A monitor process for monitoring Ray nodes.
Attributes:
dashboard_agent: The DashboardAgent object contains global config
"""
def __init__(self, dashboard_agent):
"""Initialize the reporter object."""
super().__init__(dashboard_agent)
if IN_KUBERNETES_POD or IN_CONTAINER:
# psutil does not give a meaningful logical cpu count when in a K8s pod, or
# in a container in general.
# Use ray._private.utils for this instead.
logical_cpu_count = ray._private.utils.get_num_cpus(
override_docker_cpu_warning=True
)
# (Override the docker warning to avoid dashboard log spam.)
# The dashboard expects a physical CPU count as well.
# This is not always meaningful in a container, but we will go ahead
# and give the dashboard what it wants using psutil.
physical_cpu_count = psutil.cpu_count(logical=False)
else:
logical_cpu_count = psutil.cpu_count()
physical_cpu_count = psutil.cpu_count(logical=False)
self._cpu_counts = (logical_cpu_count, physical_cpu_count)
self._gcs_aio_client = dashboard_agent.gcs_aio_client
self._ip = dashboard_agent.ip
self._is_head_node = self._ip == dashboard_agent.gcs_address.split(":")[0]
self._hostname = socket.gethostname()
self._workers = set()
self._network_stats_hist = [(0, (0.0, 0.0))] # time, (sent, recv)
self._disk_io_stats_hist = [
(0, (0.0, 0.0, 0, 0))
] # time, (bytes read, bytes written, read ops, write ops)
self._metrics_collection_disabled = dashboard_agent.metrics_collection_disabled
self._metrics_agent = None
if not self._metrics_collection_disabled:
self._metrics_agent = MetricsAgent(
"127.0.0.1" if self._ip == "127.0.0.1" else "",
dashboard_agent.metrics_export_port,
)
self._key = (
f"{reporter_consts.REPORTER_PREFIX}" f"{self._dashboard_agent.node_id}"
)
async def GetProfilingStats(self, request, context):
pid = request.pid
duration = request.duration
profiling_file_path = os.path.join(
ray._private.utils.get_ray_temp_dir(), f"{pid}_profiling.txt"
)
sudo = "sudo" if ray._private.utils.get_user() != "root" else ""
process = await asyncio.create_subprocess_shell(
f"{sudo} $(which py-spy) record "
f"-o {profiling_file_path} -p {pid} -d {duration} -f speedscope",
stdout=subprocess.PIPE,
stderr=subprocess.PIPE,
shell=True,
)
stdout, stderr = await process.communicate()
if process.returncode != 0:
profiling_stats = ""
else:
with open(profiling_file_path, "r") as f:
profiling_stats = f.read()
return reporter_pb2.GetProfilingStatsReply(
profiling_stats=profiling_stats, std_out=stdout, std_err=stderr
)
async def ReportOCMetrics(self, request, context):
# Do nothing if metrics collection is disabled.
if self._metrics_collection_disabled:
return reporter_pb2.ReportOCMetricsReply()
# This function receives a GRPC containing OpenCensus (OC) metrics
# from a Ray process, then exposes those metrics to Prometheus.
try:
self._metrics_agent.record_metric_points_from_protobuf(request.metrics)
except Exception:
logger.error(traceback.format_exc())
return reporter_pb2.ReportOCMetricsReply()
@staticmethod
def _get_cpu_percent():
if IN_KUBERNETES_POD:
return k8s_utils.cpu_percent()
else:
return psutil.cpu_percent()
@staticmethod
def _get_gpu_usage():
global enable_gpu_usage_check
if gpustat is None or not enable_gpu_usage_check:
return []
gpu_utilizations = []
gpus = []
try:
gpus = gpustat.new_query().gpus
except Exception as e:
logger.debug(f"gpustat failed to retrieve GPU information: {e}")
# gpustat calls pynvml.nvmlInit()
# On machines without GPUs, this can run subprocesses that spew to
# stderr. Then with log_to_driver=True, we get log spew from every
# single raylet. To avoid this, disable the GPU usage check on
# certain errors.
# https://github.com/ray-project/ray/issues/14305
# https://github.com/ray-project/ray/pull/21686
if type(e).__name__ == "NVMLError_DriverNotLoaded":
enable_gpu_usage_check = False
for gpu in gpus:
# Note the keys in this dict have periods which throws
# off javascript so we change .s to _s
gpu_data = {"_".join(key.split(".")): val for key, val in gpu.entry.items()}
gpu_utilizations.append(gpu_data)
return gpu_utilizations
@staticmethod
def _get_boot_time():
if IN_KUBERNETES_POD:
# Return start time of container entrypoint
return psutil.Process(pid=1).create_time()
else:
return psutil.boot_time()
@staticmethod
def _get_network_stats():
ifaces = [
v for k, v in psutil.net_io_counters(pernic=True).items() if k[0] == "e"
]
sent = sum((iface.bytes_sent for iface in ifaces))
recv = sum((iface.bytes_recv for iface in ifaces))
return sent, recv
@staticmethod
def _get_mem_usage():
total = ray._private.utils.get_system_memory()
used = ray._private.utils.get_used_memory()
available = total - used
percent = round(used / total, 3) * 100
return total, available, percent, used
@staticmethod
def _get_disk_usage():
if IN_KUBERNETES_POD and not ENABLE_K8S_DISK_USAGE:
# If in a K8s pod, disable disk display by passing in dummy values.
return {
"/": psutil._common.sdiskusage(total=1, used=0, free=1, percent=0.0)
}
if sys.platform == "win32":
root = psutil.disk_partitions()[0].mountpoint
else:
root = os.sep
tmp = ray._private.utils.get_user_temp_dir()
return {
"/": psutil.disk_usage(root),
tmp: psutil.disk_usage(tmp),
}
@staticmethod
def _get_disk_io_stats():
stats = psutil.disk_io_counters()
return (
stats.read_bytes,
stats.write_bytes,
stats.read_count,
stats.write_count,
)
def _get_workers(self):
raylet_proc = self._get_raylet_proc()
if raylet_proc is None:
return []
else:
workers = set(raylet_proc.children())
# Remove the current process (reporter agent), which is also a child of
# the Raylet.
workers.discard(psutil.Process())
self._workers = workers
return [
w.as_dict(
attrs=[
"pid",
"create_time",
"cpu_percent",
"cpu_times",
"cmdline",
"memory_info",
"memory_full_info",
]
)
for w in self._workers
if w.status() != psutil.STATUS_ZOMBIE
]
@staticmethod
def _get_raylet_proc():
try:
curr_proc = psutil.Process()
# Here, parent is always raylet because the
# dashboard agent is a child of the raylet process.
parent = curr_proc.parent()
if parent is not None:
if parent.pid == 1:
return None
if parent.status() == psutil.STATUS_ZOMBIE:
return None
return parent
except (psutil.AccessDenied, ProcessLookupError):
pass
return None
def _get_raylet(self):
raylet_proc = self._get_raylet_proc()
if raylet_proc is None:
return {}
else:
return raylet_proc.as_dict(
attrs=[
"pid",
"create_time",
"cpu_percent",
"cpu_times",
"cmdline",
"memory_info",
"memory_full_info",
]
)
def _get_load_avg(self):
if sys.platform == "win32":
cpu_percent = psutil.cpu_percent()
load = (cpu_percent, cpu_percent, cpu_percent)
else:
load = os.getloadavg()
per_cpu_load = tuple((round(x / self._cpu_counts[0], 2) for x in load))
return load, per_cpu_load
@staticmethod
def _compute_speed_from_hist(hist):
while len(hist) > 7:
hist.pop(0)
then, prev_stats = hist[0]
now, now_stats = hist[-1]
time_delta = now - then
return tuple((y - x) / time_delta for x, y in zip(prev_stats, now_stats))
def _get_all_stats(self):
now = dashboard_utils.to_posix_time(datetime.datetime.utcnow())
network_stats = self._get_network_stats()
self._network_stats_hist.append((now, network_stats))
network_speed_stats = self._compute_speed_from_hist(self._network_stats_hist)
disk_stats = self._get_disk_io_stats()
self._disk_io_stats_hist.append((now, disk_stats))
disk_speed_stats = self._compute_speed_from_hist(self._disk_io_stats_hist)
return {
"now": now,
"hostname": self._hostname,
"ip": self._ip,
"cpu": self._get_cpu_percent(),
"cpus": self._cpu_counts,
"mem": self._get_mem_usage(),
"workers": self._get_workers(),
"raylet": self._get_raylet(),
"bootTime": self._get_boot_time(),
"loadAvg": self._get_load_avg(),
"disk": self._get_disk_usage(),
"disk_io": disk_stats,
"disk_io_speed": disk_speed_stats,
"gpus": self._get_gpu_usage(),
"network": network_stats,
"network_speed": network_speed_stats,
# Deprecated field, should be removed with frontend.
"cmdline": self._get_raylet().get("cmdline", []),
}
def _record_stats(self, stats, cluster_stats):
records_reported = []
ip = stats["ip"]
# -- Instance count of cluster --
# Only report cluster stats on head node
if "autoscaler_report" in cluster_stats and self._is_head_node:
active_nodes = cluster_stats["autoscaler_report"]["active_nodes"]
for node_type, active_node_count in active_nodes.items():
records_reported.append(
Record(
gauge=METRICS_GAUGES["cluster_active_nodes"],
value=active_node_count,
tags={"node_type": node_type},
)
)
failed_nodes = cluster_stats["autoscaler_report"]["failed_nodes"]
failed_nodes_dict = {}
for node_ip, node_type in failed_nodes:
if node_type in failed_nodes_dict:
failed_nodes_dict[node_type] += 1
else:
failed_nodes_dict[node_type] = 1
for node_type, failed_node_count in failed_nodes_dict.items():
records_reported.append(
Record(
gauge=METRICS_GAUGES["cluster_failed_nodes"],
value=failed_node_count,
tags={"node_type": node_type},
)
)
pending_nodes = cluster_stats["autoscaler_report"]["pending_nodes"]
pending_nodes_dict = {}
for node_ip, node_type, status_message in pending_nodes:
if node_type in pending_nodes_dict:
pending_nodes_dict[node_type] += 1
else:
pending_nodes_dict[node_type] = 1
for node_type, pending_node_count in pending_nodes_dict.items():
records_reported.append(
Record(
gauge=METRICS_GAUGES["cluster_pending_nodes"],
value=pending_node_count,
tags={"node_type": node_type},
)
)
# -- CPU per node --
cpu_usage = float(stats["cpu"])
cpu_record = Record(
gauge=METRICS_GAUGES["node_cpu_utilization"],
value=cpu_usage,
tags={"ip": ip},
)
cpu_count, _ = stats["cpus"]
cpu_count_record = Record(
gauge=METRICS_GAUGES["node_cpu_count"], value=cpu_count, tags={"ip": ip}
)
# -- Mem per node --
mem_total, mem_available, _, mem_used = stats["mem"]
mem_used_record = Record(
gauge=METRICS_GAUGES["node_mem_used"], value=mem_used, tags={"ip": ip}
)
mem_available_record = Record(
gauge=METRICS_GAUGES["node_mem_available"],
value=mem_available,
tags={"ip": ip},
)
mem_total_record = Record(
gauge=METRICS_GAUGES["node_mem_total"], value=mem_total, tags={"ip": ip}
)
# -- GPU per node --
gpus = stats["gpus"]
gpus_available = len(gpus)
if gpus_available:
gpus_utilization, gram_used, gram_total = 0, 0, 0
for gpu in gpus:
# Consume GPU may not report its utilization.
if gpu["utilization_gpu"] is not None:
gpus_utilization += gpu["utilization_gpu"]
gram_used += gpu["memory_used"]
gram_total += gpu["memory_total"]
gram_available = gram_total - gram_used
gpus_available_record = Record(
gauge=METRICS_GAUGES["node_gpus_available"],
value=gpus_available,
tags={"ip": ip},
)
gpus_utilization_record = Record(
gauge=METRICS_GAUGES["node_gpus_utilization"],
value=gpus_utilization,
tags={"ip": ip},
)
gram_used_record = Record(
gauge=METRICS_GAUGES["node_gram_used"], value=gram_used, tags={"ip": ip}
)
gram_available_record = Record(
gauge=METRICS_GAUGES["node_gram_available"],
value=gram_available,
tags={"ip": ip},
)
records_reported.extend(
[
gpus_available_record,
gpus_utilization_record,
gram_used_record,
gram_available_record,
]
)
# -- Disk per node --
disk_io_stats = stats["disk_io"]
disk_read_record = Record(
gauge=METRICS_GAUGES["node_disk_io_read"],
value=disk_io_stats[0],
tags={"ip": ip},
)
disk_write_record = Record(
gauge=METRICS_GAUGES["node_disk_io_write"],
value=disk_io_stats[1],
tags={"ip": ip},
)
disk_read_count_record = Record(
gauge=METRICS_GAUGES["node_disk_io_read_count"],
value=disk_io_stats[2],
tags={"ip": ip},
)
disk_write_count_record = Record(
gauge=METRICS_GAUGES["node_disk_io_write_count"],
value=disk_io_stats[3],
tags={"ip": ip},
)
disk_io_speed_stats = stats["disk_io_speed"]
disk_read_speed_record = Record(
gauge=METRICS_GAUGES["node_disk_io_read_speed"],
value=disk_io_speed_stats[0],
tags={"ip": ip},
)
disk_write_speed_record = Record(
gauge=METRICS_GAUGES["node_disk_io_write_speed"],
value=disk_io_speed_stats[1],
tags={"ip": ip},
)
disk_read_iops_record = Record(
gauge=METRICS_GAUGES["node_disk_read_iops"],
value=disk_io_speed_stats[2],
tags={"ip": ip},
)
disk_write_iops_record = Record(
gauge=METRICS_GAUGES["node_disk_write_iops"],
value=disk_io_speed_stats[3],
tags={"ip": ip},
)
used, free = 0, 0
for entry in stats["disk"].values():
used += entry.used
free += entry.free
disk_utilization = float(used / (used + free)) * 100
disk_usage_record = Record(
gauge=METRICS_GAUGES["node_disk_usage"], value=used, tags={"ip": ip}
)
disk_free_record = Record(
gauge=METRICS_GAUGES["node_disk_free"], value=free, tags={"ip": ip}
)
disk_utilization_percentage_record = Record(
gauge=METRICS_GAUGES["node_disk_utilization_percentage"],
value=disk_utilization,
tags={"ip": ip},
)
# -- Network speed (send/receive) stats per node --
network_stats = stats["network"]
network_sent_record = Record(
gauge=METRICS_GAUGES["node_network_sent"],
value=network_stats[0],
tags={"ip": ip},
)
network_received_record = Record(
gauge=METRICS_GAUGES["node_network_received"],
value=network_stats[1],
tags={"ip": ip},
)
# -- Network speed (send/receive) per node --
network_speed_stats = stats["network_speed"]
network_send_speed_record = Record(
gauge=METRICS_GAUGES["node_network_send_speed"],
value=network_speed_stats[0],
tags={"ip": ip},
)
network_receive_speed_record = Record(
gauge=METRICS_GAUGES["node_network_receive_speed"],
value=network_speed_stats[1],
tags={"ip": ip},
)
raylet_stats = stats["raylet"]
if raylet_stats:
raylet_pid = str(raylet_stats["pid"])
# -- raylet CPU --
raylet_cpu_usage = float(raylet_stats["cpu_percent"]) * 100
records_reported.append(
Record(
gauge=METRICS_GAUGES["raylet_cpu"],
value=raylet_cpu_usage,
tags={"ip": ip, "pid": raylet_pid},
)
)
# -- raylet mem --
raylet_rss = float(raylet_stats["memory_info"].rss) / 1.0e6
records_reported.append(
Record(
gauge=METRICS_GAUGES["raylet_mem"],
value=raylet_rss,
tags={"ip": ip, "pid": raylet_pid},
)
)
raylet_mem_full_info = raylet_stats.get("memory_full_info")
if raylet_mem_full_info is not None:
raylet_uss = float(raylet_mem_full_info.uss) / 1.0e6
records_reported.append(
Record(
gauge=METRICS_GAUGES["raylet_mem_uss"],
value=raylet_uss,
tags={"ip": ip, "pid": raylet_pid},
)
)
workers_stats = stats["workers"]
if workers_stats:
total_workers_cpu_percentage = 0.0
total_workers_rss = 0.0
total_workers_uss = 0.0
for worker in workers_stats:
total_workers_cpu_percentage += float(worker["cpu_percent"]) * 100.0
total_workers_rss += float(worker["memory_info"].rss) / 1.0e6
worker_mem_full_info = worker.get("memory_full_info")
if worker_mem_full_info is not None:
total_workers_uss += float(worker_mem_full_info.uss) / 1.0e6
records_reported.append(
Record(
gauge=METRICS_GAUGES["workers_cpu"],
value=total_workers_cpu_percentage,
tags={"ip": ip},
)
)
records_reported.append(
Record(
gauge=METRICS_GAUGES["workers_mem"],
value=total_workers_rss,
tags={"ip": ip},
)
)
if total_workers_uss > 0.0:
records_reported.append(
Record(
gauge=METRICS_GAUGES["workers_mem_uss"],
value=total_workers_uss,
tags={"ip": ip},
)
)
records_reported.extend(
[
cpu_record,
cpu_count_record,
mem_used_record,
mem_available_record,
mem_total_record,
disk_read_record,
disk_write_record,
disk_read_count_record,
disk_write_count_record,
disk_read_speed_record,
disk_write_speed_record,
disk_read_iops_record,
disk_write_iops_record,
disk_usage_record,
disk_free_record,
disk_utilization_percentage_record,
network_sent_record,
network_received_record,
network_send_speed_record,
network_receive_speed_record,
]
)
return records_reported
async def _perform_iteration(self, publisher):
"""Get any changes to the log files and push updates to kv."""
while True:
try:
formatted_status_string = await self._gcs_aio_client.internal_kv_get(
DEBUG_AUTOSCALING_STATUS.encode(),
None,
timeout=GCS_RPC_TIMEOUT_SECONDS,
)
stats = self._get_all_stats()
# Report stats only when metrics collection is enabled.
if not self._metrics_collection_disabled:
cluster_stats = (
json.loads(formatted_status_string.decode())
if formatted_status_string
else {}
)
records_reported = self._record_stats(stats, cluster_stats)
self._metrics_agent.record_reporter_stats(records_reported)
await publisher.publish_resource_usage(self._key, jsonify_asdict(stats))
except Exception:
logger.exception("Error publishing node physical stats.")
await asyncio.sleep(reporter_consts.REPORTER_UPDATE_INTERVAL_MS / 1000)
async def run(self, server):
if server:
reporter_pb2_grpc.add_ReporterServiceServicer_to_server(self, server)
await self._perform_iteration(self._dashboard_agent.publisher)
@staticmethod
def is_minimal_module():
return False