docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env PongDeterministic-v0 \ --run A3C \ --stop '{"training_iteration": 1}' \ --config '{"num_workers": 2}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env Pong-ram-v4 \ --run A3C \ --stop '{"training_iteration": 1}' \ --config '{"num_workers": 2}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env PongDeterministic-v0 \ --run A2C \ --stop '{"training_iteration": 1}' \ --config '{"num_workers": 2}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v1 \ --run PPO \ --stop '{"training_iteration": 1}' \ --config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "lr": 1e-4, "sgd_minibatch_size": 64, "train_batch_size": 2000, "num_workers": 1, "model": {"free_log_std": true}}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v1 \ --run PPO \ --stop '{"training_iteration": 1}' \ --config '{"simple_optimizer": false, "num_sgd_iter": 2, "model": {"use_lstm": true}}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v1 \ --run PPO \ --stop '{"training_iteration": 1}' \ --config '{"simple_optimizer": true, "num_sgd_iter": 2, "model": {"use_lstm": true}}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v1 \ --run PPO \ --stop '{"training_iteration": 1}' \ --config '{"num_gpus": 0.1}' \ --ray-num-gpus 1 docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v1 \ --run PPO \ --stop '{"training_iteration": 1}' \ --config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "lr": 1e-4, "sgd_minibatch_size": 64, "train_batch_size": 2000, "num_workers": 1, "use_gae": false, "batch_mode": "complete_episodes"}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v1 \ --run PPO \ --stop '{"training_iteration": 1}' \ --config '{"remote_worker_envs": true, "remote_env_batch_wait_ms": 99999999, "num_envs_per_worker": 2, "num_workers": 1, "train_batch_size": 100, "sgd_minibatch_size": 50}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v1 \ --run PPO \ --stop '{"training_iteration": 2}' \ --config '{"remote_worker_envs": true, "num_envs_per_worker": 2, "num_workers": 1, "train_batch_size": 100, "sgd_minibatch_size": 50}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env Pendulum-v0 \ --run APPO \ --stop '{"training_iteration": 1}' \ --config '{"num_workers": 2, "num_gpus": 0}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env Pendulum-v0 \ --run ES \ --stop '{"training_iteration": 1}' \ --config '{"stepsize": 0.01, "episodes_per_batch": 20, "train_batch_size": 100, "num_workers": 2}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env Pong-v0 \ --run ES \ --stop '{"training_iteration": 1}' \ --config '{"stepsize": 0.01, "episodes_per_batch": 20, "train_batch_size": 100, "num_workers": 2}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run A3C \ --stop '{"training_iteration": 1}' \ docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run DQN \ --stop '{"training_iteration": 1}' \ --config '{"lr": 1e-3, "schedule_max_timesteps": 100000, "exploration_fraction": 0.1, "exploration_final_eps": 0.02, "dueling": false, "hiddens": [], "model": {"fcnet_hiddens": [64], "fcnet_activation": "relu"}}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run DQN \ --stop '{"training_iteration": 1}' \ --config '{"num_workers": 2}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run APEX \ --stop '{"training_iteration": 1}' \ --config '{"num_workers": 2, "timesteps_per_iteration": 1000, "num_gpus": 0, "min_iter_time_s": 1}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env FrozenLake-v0 \ --run DQN \ --stop '{"training_iteration": 1}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env FrozenLake-v0 \ --run PPO \ --stop '{"training_iteration": 1}' \ --config '{"num_sgd_iter": 10, "sgd_minibatch_size": 64, "train_batch_size": 1000, "num_workers": 1}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env PongDeterministic-v4 \ --run DQN \ --stop '{"training_iteration": 1}' \ --config '{"lr": 1e-4, "schedule_max_timesteps": 2000000, "buffer_size": 10000, "exploration_fraction": 0.1, "exploration_final_eps": 0.01, "sample_batch_size": 4, "learning_starts": 10000, "target_network_update_freq": 1000, "gamma": 0.99, "prioritized_replay": true}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env MontezumaRevenge-v0 \ --run PPO \ --stop '{"training_iteration": 1}' \ --config '{"kl_coeff": 1.0, "num_sgd_iter": 10, "lr": 1e-4, "sgd_minibatch_size": 64, "train_batch_size": 2000, "num_workers": 1, "model": {"dim": 40, "conv_filters": [[16, [8, 8], 4], [32, [4, 4], 2], [512, [5, 5], 1]]}}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v1 \ --run A3C \ --stop '{"training_iteration": 1}' \ --config '{"num_workers": 2, "model": {"use_lstm": true}}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run DQN \ --stop '{"training_iteration": 1}' \ --config '{"num_workers": 2}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run PG \ --stop '{"training_iteration": 1}' \ --config '{"sample_batch_size": 500, "num_workers": 1}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run PG \ --stop '{"training_iteration": 1}' \ --config '{"sample_batch_size": 500, "use_pytorch": true}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run PG \ --stop '{"training_iteration": 1}' \ --config '{"sample_batch_size": 500, "num_workers": 1, "model": {"use_lstm": true, "max_seq_len": 100}}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run PG \ --stop '{"training_iteration": 1}' \ --config '{"sample_batch_size": 500, "num_workers": 1, "num_envs_per_worker": 10}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env Pong-v0 \ --run PG \ --stop '{"training_iteration": 1}' \ --config '{"sample_batch_size": 500, "num_workers": 1}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env FrozenLake-v0 \ --run PG \ --stop '{"training_iteration": 1}' \ --config '{"sample_batch_size": 500, "num_workers": 1}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env Pendulum-v0 \ --run DDPG \ --stop '{"training_iteration": 1}' \ --config '{"num_workers": 1}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run IMPALA \ --stop '{"training_iteration": 1}' \ --config '{"num_gpus": 0, "num_workers": 2, "min_iter_time_s": 1}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run IMPALA \ --stop '{"training_iteration": 1}' \ --config '{"num_gpus": 0, "num_workers": 2, "num_aggregation_workers": 2, "min_iter_time_s": 1}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run IMPALA \ --stop '{"training_iteration": 1}' \ --config '{"num_gpus": 0, "num_workers": 2, "min_iter_time_s": 1, "model": {"use_lstm": true}}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run IMPALA \ --stop '{"training_iteration": 1}' \ --config '{"num_gpus": 0, "num_workers": 2, "min_iter_time_s": 1, "num_data_loader_buffers": 2, "replay_buffer_num_slots": 100, "replay_proportion": 1.0}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run IMPALA \ --stop '{"training_iteration": 1}' \ --config '{"num_gpus": 0, "num_workers": 2, "min_iter_time_s": 1, "num_data_loader_buffers": 2, "replay_buffer_num_slots": 100, "replay_proportion": 1.0, "model": {"use_lstm": true}}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env MountainCarContinuous-v0 \ --run DDPG \ --stop '{"training_iteration": 1}' \ --config '{"num_workers": 1}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env MountainCarContinuous-v0 \ --run DDPG \ --stop '{"training_iteration": 1}' \ --config '{"num_workers": 1}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env Pendulum-v0 \ --run APEX_DDPG \ --ray-num-cpus 8 \ --stop '{"training_iteration": 1}' \ --config '{"num_workers": 2, "optimizer": {"num_replay_buffer_shards": 1}, "learning_starts": 100, "min_iter_time_s": 1}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env Pendulum-v0 \ --run APEX_DDPG \ --ray-num-cpus 8 \ --stop '{"training_iteration": 1}' \ --config '{"num_workers": 2, "optimizer": {"num_replay_buffer_shards": 1}, "learning_starts": 100, "min_iter_time_s": 1, "batch_mode": "complete_episodes", "parameter_noise": true}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run MARWIL \ --stop '{"training_iteration": 1}' \ --config '{"input": "/ray/python/ray/rllib/tests/data/cartpole_small", "learning_starts": 0, "input_evaluation": ["wis", "is"], "shuffle_buffer_size": 10}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v0 \ --run DQN \ --stop '{"training_iteration": 1}' \ --config '{"input": "/ray/python/ray/rllib/tests/data/cartpole_small", "learning_starts": 0, "input_evaluation": ["wis", "is"], "soft_q": true}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/test_local.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/test_reproducibility.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/test_dependency.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/test_legacy.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/test_io.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/test_checkpoint_restore.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/test_rollout_worker.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/test_nested_spaces.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/test_external_env.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/test_external_multi_agent_env.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/custom_keras_model.py --run=A2C --stop=50 docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/custom_keras_model.py --run=PPO --stop=50 docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/custom_keras_model.py --run=DQN --stop=50 docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/parametric_action_cartpole.py --run=PG --stop=50 docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/parametric_action_cartpole.py --run=PPO --stop=50 docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/parametric_action_cartpole.py --run=DQN --stop=50 docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/test_lstm.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/batch_norm_model.py --num-iters=1 --run=PPO docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/batch_norm_model.py --num-iters=1 --run=PG docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/batch_norm_model.py --num-iters=1 --run=DQN docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/batch_norm_model.py --num-iters=1 --run=DDPG docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/test_multi_agent_env.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/test_supported_spaces.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/test_env_with_subprocess.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/tests/test_rollout.sh # Run all single-agent regression tests (3x retry each) for yaml in $(ls $ROOT_DIR/../../python/ray/rllib/tuned_examples/regression_tests); do docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/run_regression_tests.py \ /ray/python/ray/rllib/tuned_examples/regression_tests/$yaml done # Try a couple times since it's stochastic docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/multiagent_pendulum.py || \ docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/multiagent_pendulum.py || \ docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/multiagent_pendulum.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/multiagent_cartpole.py --num-iters=2 docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/multiagent_cartpole.py --num-iters=2 --simple docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/multiagent_two_trainers.py --num-iters=2 docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/test_avail_actions_qmix.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/cartpole_lstm.py --run=PPO --stop=200 docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/cartpole_lstm.py --run=IMPALA --stop=100 docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/cartpole_lstm.py --stop=200 --use-prev-action-reward docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/custom_loss.py --iters=2 docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/rollout_worker_custom_workflow.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/eager_execution.py --iters=2 docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/custom_tf_policy.py --iters=2 docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/custom_torch_policy.py --iters=2 docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/rollout_worker_custom_workflow.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/custom_metrics_and_callbacks.py --num-iters=2 docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/contrib/random_agent/random_agent.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/twostep_game.py --stop=2000 --run=PG docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/twostep_game.py --stop=2000 --run=QMIX docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/examples/twostep_game.py --stop=2000 --run=APEX_QMIX docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env PongDeterministic-v4 \ --run A3C \ --stop '{"training_iteration": 1}' \ --config '{"num_workers": 2, "use_pytorch": true, "sample_async": false, "model": {"use_lstm": false, "grayscale": true, "zero_mean": false, "dim": 84}, "preprocessor_pref": "rllib"}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env CartPole-v1 \ --run A3C \ --stop '{"training_iteration": 1}' \ --config '{"num_workers": 2, "use_pytorch": true, "sample_async": false}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env Pendulum-v0 \ --run A3C \ --stop '{"training_iteration": 1}' \ --config '{"num_workers": 2, "use_pytorch": true, "sample_async": false}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output /ray/python/ray/rllib/train.py \ --env PongDeterministic-v4 \ --run IMPALA \ --stop='{"timesteps_total": 40000}' \ --ray-object-store-memory=1000000000 \ --config '{"num_workers": 1, "num_gpus": 0, "num_envs_per_worker": 32, "sample_batch_size": 50, "train_batch_size": 50, "learner_queue_size": 1}' docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/agents/impala/vtrace_test.py docker run --rm --shm-size=${SHM_SIZE} --memory=${MEMORY_SIZE} $DOCKER_SHA \ /ray/ci/suppress_output python /ray/python/ray/rllib/tests/test_ignore_worker_failure.py