import gym from gym.spaces import Box, Discrete, Tuple import numpy as np import unittest import ray from ray.rllib.models import ModelCatalog, MODEL_DEFAULTS, ActionDistribution from ray.rllib.models.tf.tf_modelv2 import TFModelV2 from ray.rllib.models.tf.tf_action_dist import TFActionDistribution from ray.rllib.models.preprocessors import (NoPreprocessor, OneHotPreprocessor, Preprocessor) from ray.rllib.models.tf.fcnet import FullyConnectedNetwork from ray.rllib.models.tf.visionnet import VisionNetwork from ray.rllib.utils.annotations import override from ray.rllib.utils.framework import try_import_tf tf = try_import_tf() class CustomPreprocessor(Preprocessor): def _init_shape(self, obs_space, options): return [1] class CustomPreprocessor2(Preprocessor): def _init_shape(self, obs_space, options): return [1] class CustomModel(TFModelV2): def _build_layers(self, *args): return tf.constant([[0] * 5]), None class CustomActionDistribution(TFActionDistribution): def __init__(self, inputs, model): # Store our output shape. custom_model_config = model.model_config["custom_model_config"] if "output_dim" in custom_model_config: self.output_shape = tf.concat( [tf.shape(inputs)[:1], custom_model_config["output_dim"]], axis=0) else: self.output_shape = tf.shape(inputs) super().__init__(inputs, model) @staticmethod def required_model_output_shape(action_space, model_config=None): custom_model_config = model_config["custom_model_config"] or {} if custom_model_config is not None and \ custom_model_config.get("output_dim"): return custom_model_config.get("output_dim") return action_space.shape @override(TFActionDistribution) def _build_sample_op(self): return tf.random_uniform(self.output_shape) @override(ActionDistribution) def logp(self, x): return tf.zeros(self.output_shape) class ModelCatalogTest(unittest.TestCase): def tearDown(self): ray.shutdown() def test_gym_preprocessors(self): p1 = ModelCatalog.get_preprocessor(gym.make("CartPole-v0")) self.assertEqual(type(p1), NoPreprocessor) p2 = ModelCatalog.get_preprocessor(gym.make("FrozenLake-v0")) self.assertEqual(type(p2), OneHotPreprocessor) def test_tuple_preprocessor(self): ray.init(object_store_memory=1000 * 1024 * 1024) class TupleEnv: def __init__(self): self.observation_space = Tuple( [Discrete(5), Box(0, 5, shape=(3, ), dtype=np.float32)]) p1 = ModelCatalog.get_preprocessor(TupleEnv()) self.assertEqual(p1.shape, (8, )) self.assertEqual( list(p1.transform((0, np.array([1, 2, 3])))), [float(x) for x in [1, 0, 0, 0, 0, 1, 2, 3]]) def test_custom_preprocessor(self): ray.init(object_store_memory=1000 * 1024 * 1024) ModelCatalog.register_custom_preprocessor("foo", CustomPreprocessor) ModelCatalog.register_custom_preprocessor("bar", CustomPreprocessor2) env = gym.make("CartPole-v0") p1 = ModelCatalog.get_preprocessor(env, {"custom_preprocessor": "foo"}) self.assertEqual(str(type(p1)), str(CustomPreprocessor)) p2 = ModelCatalog.get_preprocessor(env, {"custom_preprocessor": "bar"}) self.assertEqual(str(type(p2)), str(CustomPreprocessor2)) p3 = ModelCatalog.get_preprocessor(env) self.assertEqual(type(p3), NoPreprocessor) def test_default_models(self): ray.init(object_store_memory=1000 * 1024 * 1024) with tf.variable_scope("test1"): p1 = ModelCatalog.get_model_v2( obs_space=Box(0, 1, shape=(3, ), dtype=np.float32), action_space=Discrete(5), num_outputs=5, model_config={}) self.assertEqual(type(p1), FullyConnectedNetwork) with tf.variable_scope("test2"): p2 = ModelCatalog.get_model_v2( obs_space=Box(0, 1, shape=(84, 84, 3), dtype=np.float32), action_space=Discrete(5), num_outputs=5, model_config={}) self.assertEqual(type(p2), VisionNetwork) def test_custom_model(self): ray.init(object_store_memory=1000 * 1024 * 1024) ModelCatalog.register_custom_model("foo", CustomModel) p1 = ModelCatalog.get_model_v2( obs_space=Box(0, 1, shape=(3, ), dtype=np.float32), action_space=Discrete(5), num_outputs=5, model_config={"custom_model": "foo"}) self.assertEqual(str(type(p1)), str(CustomModel)) def test_custom_action_distribution(self): class Model(): pass ray.init( object_store_memory=1000 * 1024 * 1024, ignore_reinit_error=True) # otherwise fails sometimes locally # registration ModelCatalog.register_custom_action_dist("test", CustomActionDistribution) action_space = Box(0, 1, shape=(5, 3), dtype=np.float32) # test retrieving it model_config = MODEL_DEFAULTS.copy() model_config["custom_action_dist"] = "test" dist_cls, param_shape = ModelCatalog.get_action_dist( action_space, model_config) self.assertEqual(str(dist_cls), str(CustomActionDistribution)) self.assertEqual(param_shape, action_space.shape) # test the class works as a distribution dist_input = tf.placeholder(tf.float32, (None, ) + param_shape) model = Model() model.model_config = model_config dist = dist_cls(dist_input, model=model) self.assertEqual(dist.sample().shape[1:], dist_input.shape[1:]) self.assertIsInstance(dist.sample(), tf.Tensor) with self.assertRaises(NotImplementedError): dist.entropy() # test passing the options to it model_config["custom_model_config"].update({"output_dim": (3, )}) dist_cls, param_shape = ModelCatalog.get_action_dist( action_space, model_config) self.assertEqual(param_shape, (3, )) dist_input = tf.placeholder(tf.float32, (None, ) + param_shape) model.model_config = model_config dist = dist_cls(dist_input, model=model) self.assertEqual(dist.sample().shape[1:], dist_input.shape[1:]) self.assertIsInstance(dist.sample(), tf.Tensor) with self.assertRaises(NotImplementedError): dist.entropy() if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__]))