.. _tune-pytorch-lightning: Using PyTorch Lightning with Tune ================================= PyTorch Lightning is a framework which brings structure into training PyTorch models. It aims to avoid boilerplate code, so you don't have to write the same training loops all over again when building a new model. .. image:: /images/pytorch_lightning_full.png The main abstraction of PyTorch Lightning is the ``LightningModule`` class, which should be extended by your application. There is `a great post on how to transfer your models from vanilla PyTorch to Lightning `_. The class structure of PyTorch Lightning makes it very easy to define and tune model parameters. This tutorial will show you how to use Tune to find the best set of parameters for your application on the example of training a MNIST classifier. Notably, the ``LightningModule`` does not have to be altered at all for this - so you can use it plug and play for your existing models, assuming their parameters are configurable! .. note:: To run this example, you will need to install the following: .. code-block:: bash $ pip install ray torch torchvision pytorch-lightning .. contents:: :local: :backlinks: none PyTorch Lightning classifier for MNIST -------------------------------------- Let's first start with the basic PyTorch Lightning implementation of an MNIST classifier. This classifier does not include any tuning code at this point. Our example builds on the MNIST example from the `blog post we talked about earlier `_. First, we run some imports: .. literalinclude:: /../../python/ray/tune/examples/mnist_pytorch_lightning.py :language: python :start-after: __import_lightning_begin__ :end-before: __import_lightning_end__ And then there is the Lightning model adapted from the blog post. Note that we left out the test set validation and made the model parameters configurable through a ``config`` dict that is passed on initialization. Also, we specify a ``data_dir`` where the MNIST data will be stored. Lastly, we added a new metric, the validation accuracy, to the logs. .. literalinclude:: /../../python/ray/tune/examples/mnist_pytorch_lightning.py :language: python :start-after: __lightning_begin__ :end-before: __lightning_end__ And that's it! You can now run ``train_mnist(config)`` to train the classifier, e.g. like so: .. code-block:: python config = { "layer_1_size": 128, "layer_2_size": 256, "lr": 1e-3, "batch_size": 64 } train_mnist(config) Tuning the model parameters --------------------------- The parameters above should give you a good accuracy of over 90% already. However, we might improve on this simply by changing some of the hyperparameters. For instance, maybe we get an even higher accuracy if we used a larger batch size. Instead of guessing the parameter values, let's use Tune to systematically try out parameter combinations and find the best performing set. First, we need some additional imports: .. literalinclude:: /../../python/ray/tune/examples/mnist_pytorch_lightning.py :language: python :start-after: __import_tune_begin__ :end-before: __import_tune_end__ Talking to Tune with a PyTorch Lightning callback ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ PyTorch Lightning introduced `Callbacks `_ that can be used to plug custom functions into the training loop. This way the original ``LightningModule`` does not have to be altered at all. Also, we could use the same callback for multiple modules. The callback just reports some metrics back to Tune after each validation epoch: .. literalinclude:: /../../python/ray/tune/examples/mnist_pytorch_lightning.py :language: python :start-after: __tune_callback_begin__ :end-before: __tune_callback_end__ Adding the Tune training function ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Then we specify our training function. Note that we added the ``data_dir`` as a config parameter here, even though it should not be tuned. We just need to specify it to avoid that each training run downloads the full MNIST dataset. Instead, we want to access a shared data location. .. literalinclude:: /../../python/ray/tune/examples/mnist_pytorch_lightning.py :language: python :start-after: __tune_train_begin__ :end-before: __tune_train_end__ Sharing the data ~~~~~~~~~~~~~~~~ All our trials are using the MNIST data. To avoid that each training instance downloads their own MNIST dataset, we download it once and share the ``data_dir`` between runs. .. literalinclude:: /../../python/ray/tune/examples/mnist_pytorch_lightning.py :language: python :start-after: __tune_asha_begin__ :end-before: __tune_asha_end__ :lines: 2-3 :dedent: 4 We also delete this data after training to avoid filling up our disk or memory space. .. literalinclude:: /../../python/ray/tune/examples/mnist_pytorch_lightning.py :language: python :start-after: __tune_asha_begin__ :end-before: __tune_asha_end__ :lines: 27 :dedent: 4 Configuring the search space ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ Now we configure the parameter search space. We would like to choose between three different layer and batch sizes. The learning rate should be sampled uniformly between ``0.0001`` and ``0.1``. The ``tune.loguniform()`` function is syntactic sugar to make sampling between these different orders of magnitude easier, specifically we are able to also sample small values. .. literalinclude:: /../../python/ray/tune/examples/mnist_pytorch_lightning.py :language: python :start-after: __tune_asha_begin__ :end-before: __tune_asha_end__ :lines: 4-10 :dedent: 4 Selecting a scheduler ~~~~~~~~~~~~~~~~~~~~~ In this example, we use an `Asynchronous Hyperband `_ scheduler. This scheduler decides at each iteration which trials are likely to perform badly, and stops these trials. This way we don't waste any resources on bad hyperparameter configurations. .. literalinclude:: /../../python/ray/tune/examples/mnist_pytorch_lightning.py :language: python :start-after: __tune_asha_begin__ :end-before: __tune_asha_end__ :lines: 11-16 :dedent: 4 Changing the CLI output ~~~~~~~~~~~~~~~~~~~~~~~ We instantiate a ``CLIReporter`` to specify which metrics we would like to see in our output tables in the command line. If we didn't specify this, Tune would print all hyperparameters by default, but since ``data_dir`` is not a real hyperparameter, we can avoid printing it by omitting it in the ``parameter_columns`` parameter. .. literalinclude:: /../../python/ray/tune/examples/mnist_pytorch_lightning.py :language: python :start-after: __tune_asha_begin__ :end-before: __tune_asha_end__ :lines: 17-19 :dedent: 4 Putting it together ~~~~~~~~~~~~~~~~~~~ Lastly, we need to start Tune with ``tune.run()``. The full code looks like this: .. literalinclude:: /../../python/ray/tune/examples/mnist_pytorch_lightning.py :language: python :start-after: __tune_asha_begin__ :end-before: __tune_asha_end__ In the example above, Tune runs 10 trials with different hyperparameter configurations. An example output could look like so: .. code-block:: :emphasize-lines: 12 +------------------------------+------------+-------+----------------+----------------+-------------+--------------+----------+-----------------+----------------------+ | Trial name | status | loc | layer_1_size | layer_2_size | lr | batch_size | loss | mean_accuracy | training_iteration | |------------------------------+------------+-------+----------------+----------------+-------------+--------------+----------+-----------------+----------------------| | train_mnist_tune_63ecc_00000 | TERMINATED | | 128 | 64 | 0.00121197 | 128 | 0.120173 | 0.972461 | 10 | | train_mnist_tune_63ecc_00001 | TERMINATED | | 64 | 128 | 0.0301395 | 128 | 0.454836 | 0.868164 | 4 | | train_mnist_tune_63ecc_00002 | TERMINATED | | 64 | 128 | 0.0432097 | 128 | 0.718396 | 0.718359 | 1 | | train_mnist_tune_63ecc_00003 | TERMINATED | | 32 | 128 | 0.000294669 | 32 | 0.111475 | 0.965764 | 10 | | train_mnist_tune_63ecc_00004 | TERMINATED | | 32 | 256 | 0.000386664 | 64 | 0.133538 | 0.960839 | 8 | | train_mnist_tune_63ecc_00005 | TERMINATED | | 128 | 128 | 0.0837395 | 32 | 2.32628 | 0.0991242 | 1 | | train_mnist_tune_63ecc_00006 | TERMINATED | | 64 | 128 | 0.000158761 | 128 | 0.134595 | 0.959766 | 10 | | train_mnist_tune_63ecc_00007 | TERMINATED | | 64 | 64 | 0.000672126 | 64 | 0.118182 | 0.972903 | 10 | | train_mnist_tune_63ecc_00008 | TERMINATED | | 128 | 64 | 0.000502428 | 32 | 0.11082 | 0.975518 | 10 | | train_mnist_tune_63ecc_00009 | TERMINATED | | 64 | 256 | 0.00112894 | 32 | 0.13472 | 0.971935 | 8 | +------------------------------+------------+-------+----------------+----------------+-------------+--------------+----------+-----------------+----------------------+ As you can see in the ``training_iteration`` column, trials with a high loss (and low accuracy) have been terminated early. The best performing trial used ``layer_1_size=128``, ``layer_2_size=64``, ``lr=0.000502428`` and ``batch_size=32``. Using Population Based Training to find the best parameters ----------------------------------------------------------- The ``ASHAScheduler`` terminates those trials early that show bad performance. Sometimes, this stops trials that would get better after more training steps, and which might eventually even show better performance than other configurations. Another popular method for hyperparameter tuning, called `Population Based Training `_, instead perturbs hyperparameters during the training run. Tune implements PBT, and we only need to make some slight adjustments to our code. Adding checkpoints to the PyTorch Lightning module ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ First, we need to introduce another callback to save model checkpoints: .. literalinclude:: /../../python/ray/tune/examples/mnist_pytorch_lightning.py :language: python :start-after: __tune_checkpoint_callback_begin__ :end-before: __tune_checkpoint_callback_end__ We also include checkpoint loading in our training function: .. literalinclude:: /../../python/ray/tune/examples/mnist_pytorch_lightning.py :language: python :start-after: __tune_train_checkpoint_begin__ :end-before: __tune_train_checkpoint_end__ Configuring and running Population Based Training ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ We need to call Tune slightly differently: .. literalinclude:: /../../python/ray/tune/examples/mnist_pytorch_lightning.py :language: python :start-after: __tune_pbt_begin__ :end-before: __tune_pbt_end__ Instead of passing tune parameters to the ``config`` dict, we start with fixed values, though we are also able to sample some of them, like the layer sizes. Additionally, we have to tell PBT how to perturb the hyperparameters. Note that the layer sizes are not tuned right here. This is because we cannot simply change layer sizes during a training run - which is what would happen in PBT. An example output could look like this: .. code-block:: +-----------------------------------------+------------+-------+----------------+----------------+-----------+--------------+-----------+-----------------+----------------------+ | Trial name | status | loc | layer_1_size | layer_2_size | lr | batch_size | loss | mean_accuracy | training_iteration | |-----------------------------------------+------------+-------+----------------+----------------+-----------+--------------+-----------+-----------------+----------------------| | train_mnist_tune_checkpoint_85489_00000 | TERMINATED | | 128 | 128 | 0.001 | 64 | 0.108734 | 0.973101 | 10 | | train_mnist_tune_checkpoint_85489_00001 | TERMINATED | | 128 | 128 | 0.001 | 64 | 0.093577 | 0.978639 | 10 | | train_mnist_tune_checkpoint_85489_00002 | TERMINATED | | 128 | 256 | 0.0008 | 32 | 0.0922348 | 0.979299 | 10 | | train_mnist_tune_checkpoint_85489_00003 | TERMINATED | | 64 | 256 | 0.001 | 64 | 0.124648 | 0.973892 | 10 | | train_mnist_tune_checkpoint_85489_00004 | TERMINATED | | 128 | 64 | 0.001 | 64 | 0.101717 | 0.975079 | 10 | | train_mnist_tune_checkpoint_85489_00005 | TERMINATED | | 64 | 64 | 0.001 | 64 | 0.121467 | 0.969146 | 10 | | train_mnist_tune_checkpoint_85489_00006 | TERMINATED | | 128 | 256 | 0.00064 | 32 | 0.053446 | 0.987062 | 10 | | train_mnist_tune_checkpoint_85489_00007 | TERMINATED | | 128 | 256 | 0.001 | 64 | 0.129804 | 0.973497 | 10 | | train_mnist_tune_checkpoint_85489_00008 | TERMINATED | | 64 | 256 | 0.0285125 | 128 | 0.363236 | 0.913867 | 10 | | train_mnist_tune_checkpoint_85489_00009 | TERMINATED | | 32 | 256 | 0.001 | 64 | 0.150946 | 0.964201 | 10 | +-----------------------------------------+------------+-------+----------------+----------------+-----------+--------------+-----------+-----------------+----------------------+ As you can see, each sample ran the full number of 10 iterations. All trials ended with quite good parameter combinations and showed relatively good performances. In some runs, the parameters have been perturbed. And the best configuration even reached a mean validation accuracy of ``0.987062``! In summary, PyTorch Lightning Modules are easy to extend to use with Tune. It just took us writing one or two callbacks and a small wrapper function to get great performing parameter configurations.