from ray.rllib.utils.framework import try_import_torch from ray.rllib.models.torch.misc import SlimFC from ray.rllib.utils.torch_ops import sequence_mask torch, nn = try_import_torch() class RelativeMultiHeadAttention(nn.Module): """A RelativeMultiHeadAttention layer as described in [3]. Uses segment level recurrence with state reuse. """ def __init__(self, in_dim, out_dim, num_heads, head_dim, rel_pos_encoder, input_layernorm=False, output_activation=None, **kwargs): """Initializes a RelativeMultiHeadAttention nn.Module object. Args: in_dim (int): out_dim (int): num_heads (int): The number of attention heads to use. Denoted `H` in [2]. head_dim (int): The dimension of a single(!) attention head Denoted `D` in [2]. rel_pos_encoder (: input_layernorm (bool): Whether to prepend a LayerNorm before everything else. Should be True for building a GTrXL. output_activation (Optional[tf.nn.activation]): Optional tf.nn activation function. Should be relu for GTrXL. **kwargs: """ super().__init__(**kwargs) # No bias or non-linearity. self._num_heads = num_heads self._head_dim = head_dim # 3=Query, key, and value inputs. self._qkv_layer = SlimFC( in_size=in_dim, out_size=3 * num_heads * head_dim, use_bias=False) self._linear_layer = SlimFC( in_size=num_heads * head_dim, out_size=out_dim, use_bias=False, activation_fn=output_activation) self._pos_proj = SlimFC( in_size=in_dim, out_size=num_heads * head_dim, use_bias=False) self._uvar = torch.zeros(num_heads, head_dim) self._vvar = torch.zeros(num_heads, head_dim) nn.init.xavier_uniform_(self._uvar) nn.init.xavier_uniform_(self._vvar) self._rel_pos_encoder = rel_pos_encoder self._input_layernorm = None if input_layernorm: self._input_layernorm = torch.nn.LayerNorm(in_dim) def forward(self, inputs, memory=None): T = list(inputs.size())[1] # length of segment (time) H = self._num_heads # number of attention heads d = self._head_dim # attention head dimension # Add previous memory chunk (as const, w/o gradient) to input. # Tau (number of (prev) time slices in each memory chunk). Tau = list(memory.shape)[1] if memory is not None else 0 if memory is not None: memory.requires_grad_(False) inputs = torch.cat((memory, inputs), dim=1) # Apply the Layer-Norm. if self._input_layernorm is not None: inputs = self._input_layernorm(inputs) qkv = self._qkv_layer(inputs) queries, keys, values = torch.chunk(input=qkv, chunks=3, dim=-1) # Cut out Tau memory timesteps from query. queries = queries[:, -T:] queries = torch.reshape(queries, [-1, T, H, d]) keys = torch.reshape(keys, [-1, T + Tau, H, d]) values = torch.reshape(values, [-1, T + Tau, H, d]) R = self._pos_proj(self._rel_pos_encoder) R = torch.reshape(R, [T + Tau, H, d]) # b=batch # i and j=time indices (i=max-timesteps (inputs); j=Tau memory space) # h=head # d=head-dim (over which we will reduce-sum) score = torch.einsum("bihd,bjhd->bijh", queries + self._uvar, keys) pos_score = torch.einsum("bihd,jhd->bijh", queries + self._vvar, R) score = score + self.rel_shift(pos_score) score = score / d**0.5 # causal mask of the same length as the sequence mask = sequence_mask( torch.arange(Tau + 1, T + Tau + 1), dtype=score.dtype) mask = mask[None, :, :, None] masked_score = score * mask + 1e30 * (mask.to(torch.float32) - 1.) wmat = nn.functional.softmax(masked_score, dim=2) out = torch.einsum("bijh,bjhd->bihd", wmat, values) shape = list(out.shape)[:2] + [H * d] out = torch.reshape(out, shape) return self._linear_layer(out) @staticmethod def rel_shift(x): # Transposed version of the shift approach described in [3]. # https://github.com/kimiyoung/transformer-xl/blob/ # 44781ed21dbaec88b280f74d9ae2877f52b492a5/tf/model.py#L31 x_size = list(x.shape) x = torch.nn.functional.pad(x, (0, 0, 1, 0, 0, 0, 0, 0)) x = torch.reshape(x, [x_size[0], x_size[2] + 1, x_size[1], x_size[3]]) x = x[:, 1:, :, :] x = torch.reshape(x, x_size) return x