import json import os import ray import ray._private.test_utils as test_utils import time import tqdm if "SMOKE_TEST" in os.environ: MAX_ACTORS_IN_CLUSTER = 100 else: MAX_ACTORS_IN_CLUSTER = 10000 def test_max_actors(): # TODO (Alex): Dynamically set this based on number of cores cpus_per_actor = 0.25 @ray.remote(num_cpus=cpus_per_actor) class Actor: def foo(self): pass actors = [ Actor.remote() for _ in tqdm.trange(MAX_ACTORS_IN_CLUSTER, desc="Launching actors") ] not_ready = [actor.foo.remote() for actor in actors] for _ in tqdm.trange(len(actors)): ready, not_ready = ray.wait(not_ready) assert ray.get(*ready) is None def no_resource_leaks(): return test_utils.no_resource_leaks_excluding_node_resources() ray.init(address="auto") test_utils.wait_for_condition(no_resource_leaks) monitor_actor = test_utils.monitor_memory_usage() start_time = time.time() test_max_actors() end_time = time.time() ray.get(monitor_actor.stop_run.remote()) used_gb, usage = ray.get(monitor_actor.get_peak_memory_info.remote()) print(f"Peak memory usage: {round(used_gb, 2)}GB") print(f"Peak memory usage per processes:\n {usage}") del monitor_actor test_utils.wait_for_condition(no_resource_leaks) rate = MAX_ACTORS_IN_CLUSTER / (end_time - start_time) print( f"Success! Started {MAX_ACTORS_IN_CLUSTER} actors in " f"{end_time - start_time}s. ({rate} actors/s)" ) if "TEST_OUTPUT_JSON" in os.environ: out_file = open(os.environ["TEST_OUTPUT_JSON"], "w") results = { "actors_per_second": rate, "num_actors": MAX_ACTORS_IN_CLUSTER, "time": end_time - start_time, "success": "1", "_peak_memory": round(used_gb, 2), "_peak_process_memory": usage, } json.dump(results, out_file)