"""Example of running a custom hand-coded policy alongside trainable policies. This example has two policies: (1) a simple PG policy (2) a hand-coded policy that acts at random in the env (doesn't learn) In the console output, you can see the PG policy does much better than random: Result for PG_multi_cartpole_0: ... policy_reward_mean: pg_policy: 185.23 random: 21.255 ... """ import argparse import gym import ray from ray import tune from ray.tune.registry import register_env from ray.rllib.examples.env.multi_agent import MultiAgentCartPole from ray.rllib.examples.policy.random_policy import RandomPolicy from ray.rllib.utils.test_utils import check_learning_achieved parser = argparse.ArgumentParser() parser.add_argument("--torch", action="store_true") parser.add_argument("--as-test", action="store_true") parser.add_argument("--stop-iters", type=int, default=20) parser.add_argument("--stop-reward", type=float, default=150) parser.add_argument("--stop-timesteps", type=int, default=100000) if __name__ == "__main__": args = parser.parse_args() ray.init() # Simple environment with 4 independent cartpole entities register_env("multi_agent_cartpole", lambda _: MultiAgentCartPole({"num_agents": 4})) single_env = gym.make("CartPole-v0") obs_space = single_env.observation_space act_space = single_env.action_space stop = { "training_iteration": args.stop_iters, "episode_reward_mean": args.stop_reward, "timesteps_total": args.stop_timesteps, } results = tune.run( "PG", stop=stop, config={ "env": "multi_agent_cartpole", "multiagent": { "policies": { "pg_policy": (None, obs_space, act_space, { "framework": "torch" if args.torch else "tf", }), "random": (RandomPolicy, obs_space, act_space, {}), }, "policy_mapping_fn": ( lambda agent_id: ["pg_policy", "random"][agent_id % 2]), }, "framework": "torch" if args.torch else "tf", }, ) if args.as_test: check_learning_achieved(results, args.stop_reward) ray.shutdown()