import numpy as np import functools from ray.rllib.models.action_dist import ActionDistribution from ray.rllib.utils.annotations import override, DeveloperAPI from ray.rllib.utils import try_import_tf, try_import_tfp, SMALL_NUMBER, \ MIN_LOG_NN_OUTPUT, MAX_LOG_NN_OUTPUT from ray.rllib.utils.tuple_actions import TupleActions tf = try_import_tf() tfp = try_import_tfp() @DeveloperAPI class TFActionDistribution(ActionDistribution): """TF-specific extensions for building action distributions.""" @DeveloperAPI def __init__(self, inputs, model): super().__init__(inputs, model) self.sample_op = self._build_sample_op() @DeveloperAPI def _build_sample_op(self): """Implement this instead of sample(), to enable op reuse. This is needed since the sample op is non-deterministic and is shared between sample() and sampled_action_logp(). """ raise NotImplementedError @override(ActionDistribution) def sample(self): """Draw a sample from the action distribution.""" return self.sample_op @override(ActionDistribution) def sampled_action_logp(self): """Returns the log probability of the sampled action.""" return self.logp(self.sample_op) class Categorical(TFActionDistribution): """Categorical distribution for discrete action spaces.""" @DeveloperAPI def __init__(self, inputs, model=None, temperature=1.0): assert temperature > 0.0, "Categorical `temperature` must be > 0.0!" self.n = inputs.shape[-1] # Allow softmax formula w/ temperature != 1.0: # Divide inputs by temperature. super().__init__(inputs / temperature, model) @override(ActionDistribution) def deterministic_sample(self): return tf.math.argmax(self.inputs, axis=1) @override(ActionDistribution) def logp(self, x): return -tf.nn.sparse_softmax_cross_entropy_with_logits( logits=self.inputs, labels=tf.cast(x, tf.int32)) @override(ActionDistribution) def entropy(self): a0 = self.inputs - tf.reduce_max(self.inputs, axis=1, keep_dims=True) ea0 = tf.exp(a0) z0 = tf.reduce_sum(ea0, axis=1, keep_dims=True) p0 = ea0 / z0 return tf.reduce_sum(p0 * (tf.log(z0) - a0), axis=1) @override(ActionDistribution) def kl(self, other): a0 = self.inputs - tf.reduce_max(self.inputs, axis=1, keep_dims=True) a1 = other.inputs - tf.reduce_max(other.inputs, axis=1, keep_dims=True) ea0 = tf.exp(a0) ea1 = tf.exp(a1) z0 = tf.reduce_sum(ea0, axis=1, keep_dims=True) z1 = tf.reduce_sum(ea1, axis=1, keep_dims=True) p0 = ea0 / z0 return tf.reduce_sum(p0 * (a0 - tf.log(z0) - a1 + tf.log(z1)), axis=1) @override(TFActionDistribution) def _build_sample_op(self): return tf.squeeze(tf.multinomial(self.inputs, 1), axis=1) @staticmethod @override(ActionDistribution) def required_model_output_shape(action_space, model_config): return action_space.n class MultiCategorical(TFActionDistribution): """MultiCategorical distribution for MultiDiscrete action spaces.""" def __init__(self, inputs, model, input_lens): # skip TFActionDistribution init ActionDistribution.__init__(self, inputs, model) self.cats = [ Categorical(input_, model) for input_ in tf.split(inputs, input_lens, axis=1) ] self.sample_op = self._build_sample_op() @override(ActionDistribution) def deterministic_sample(self): return tf.stack( [cat.deterministic_sample() for cat in self.cats], axis=1) @override(ActionDistribution) def logp(self, actions): # If tensor is provided, unstack it into list. if isinstance(actions, tf.Tensor): actions = tf.unstack(tf.cast(actions, tf.int32), axis=1) logps = tf.stack( [cat.logp(act) for cat, act in zip(self.cats, actions)]) return tf.reduce_sum(logps, axis=0) @override(ActionDistribution) def multi_entropy(self): return tf.stack([cat.entropy() for cat in self.cats], axis=1) @override(ActionDistribution) def entropy(self): return tf.reduce_sum(self.multi_entropy(), axis=1) @override(ActionDistribution) def multi_kl(self, other): return tf.stack( [cat.kl(oth_cat) for cat, oth_cat in zip(self.cats, other.cats)], axis=1) @override(ActionDistribution) def kl(self, other): return tf.reduce_sum(self.multi_kl(other), axis=1) @override(TFActionDistribution) def _build_sample_op(self): return tf.stack([cat.sample() for cat in self.cats], axis=1) @staticmethod @override(ActionDistribution) def required_model_output_shape(action_space, model_config): return np.sum(action_space.nvec) class GumbelSoftmax(TFActionDistribution): """GumbelSoftmax distr. (for differentiable sampling in discr. actions The Gumbel Softmax distribution [1] (also known as the Concrete [2] distribution) is a close cousin of the relaxed one-hot categorical distribution, whose tfp implementation we will use here plus adjusted `sample_...` and `log_prob` methods. See discussion at [0]. [0] https://stackoverflow.com/questions/56226133/ soft-actor-critic-with-discrete-action-space [1] Categorical Reparametrization with Gumbel-Softmax (Jang et al, 2017): https://arxiv.org/abs/1611.01144 [2] The Concrete Distribution: A Continuous Relaxation of Discrete Random Variables (Maddison et al, 2017) https://arxiv.org/abs/1611.00712 """ @DeveloperAPI def __init__(self, inputs, model=None, temperature=1.0): """Initializes a GumbelSoftmax distribution. Args: temperature (float): Temperature parameter. For low temperatures, the expected value approaches a categorical random variable. For high temperatures, the expected value approaches a uniform distribution. """ assert temperature >= 0.0 self.dist = tfp.distributions.RelaxedOneHotCategorical( temperature=temperature, logits=inputs) super().__init__(inputs, model) @override(ActionDistribution) def deterministic_sample(self): # Return the dist object's prob values. return self.dist._distribution.probs @override(ActionDistribution) def logp(self, x): # Override since the implementation of tfp.RelaxedOneHotCategorical # yields positive values. if x.shape != self.dist.logits.shape: values = tf.one_hot( x, self.dist.logits.shape.as_list()[-1], dtype=tf.float32) assert values.shape == self.dist.logits.shape, ( values.shape, self.dist.logits.shape) # [0]'s implementation (see line below) seems to be an approximation # to the actual Gumbel Softmax density. return -tf.reduce_sum( -x * tf.nn.log_softmax(self.dist.logits, axis=-1), axis=-1) @override(TFActionDistribution) def _build_sample_op(self): return self.dist.sample() @staticmethod @override(ActionDistribution) def required_model_output_shape(action_space, model_config): return action_space.n class DiagGaussian(TFActionDistribution): """Action distribution where each vector element is a gaussian. The first half of the input vector defines the gaussian means, and the second half the gaussian standard deviations. """ def __init__(self, inputs, model): mean, log_std = tf.split(inputs, 2, axis=1) self.mean = mean self.log_std = log_std self.std = tf.exp(log_std) super().__init__(inputs, model) @override(ActionDistribution) def deterministic_sample(self): return self.mean @override(ActionDistribution) def logp(self, x): return -0.5 * tf.reduce_sum( tf.square((x - self.mean) / self.std), axis=1) - \ 0.5 * np.log(2.0 * np.pi) * tf.to_float(tf.shape(x)[1]) - \ tf.reduce_sum(self.log_std, axis=1) @override(ActionDistribution) def kl(self, other): assert isinstance(other, DiagGaussian) return tf.reduce_sum( other.log_std - self.log_std + (tf.square(self.std) + tf.square(self.mean - other.mean)) / (2.0 * tf.square(other.std)) - 0.5, axis=1) @override(ActionDistribution) def entropy(self): return tf.reduce_sum( self.log_std + .5 * np.log(2.0 * np.pi * np.e), axis=1) @override(TFActionDistribution) def _build_sample_op(self): return self.mean + self.std * tf.random_normal(tf.shape(self.mean)) @staticmethod @override(ActionDistribution) def required_model_output_shape(action_space, model_config): return np.prod(action_space.shape) * 2 class SquashedGaussian(TFActionDistribution): """A tanh-squashed Gaussian distribution defined by: mean, std, low, high. The distribution will never return low or high exactly, but `low`+SMALL_NUMBER or `high`-SMALL_NUMBER respectively. """ def __init__(self, inputs, model, low=-1.0, high=1.0): """Parameterizes the distribution via `inputs`. Args: low (float): The lowest possible sampling value (excluding this value). high (float): The highest possible sampling value (excluding this value). """ assert tfp is not None loc, log_scale = tf.split(inputs, 2, axis=-1) # Clip `scale` values (coming from NN) to reasonable values. log_scale = tf.clip_by_value(log_scale, MIN_LOG_NN_OUTPUT, MAX_LOG_NN_OUTPUT) scale = tf.exp(log_scale) self.distr = tfp.distributions.Normal(loc=loc, scale=scale) assert np.all(np.less(low, high)) self.low = low self.high = high super().__init__(inputs, model) @override(TFActionDistribution) def sampled_action_logp(self): unsquashed_values = self._unsquash(self.sample_op) log_prob = tf.reduce_sum( self.distr.log_prob(unsquashed_values), axis=-1) unsquashed_values_tanhd = tf.math.tanh(unsquashed_values) log_prob -= tf.math.reduce_sum( tf.math.log(1 - unsquashed_values_tanhd**2 + SMALL_NUMBER), axis=-1) return log_prob @override(ActionDistribution) def deterministic_sample(self): mean = self.distr.mean() return self._squash(mean) @override(TFActionDistribution) def _build_sample_op(self): return self._squash(self.distr.sample()) @override(ActionDistribution) def logp(self, x): unsquashed_values = self._unsquash(x) log_prob = tf.reduce_sum( self.distr.log_prob(value=unsquashed_values), axis=-1) unsquashed_values_tanhd = tf.math.tanh(unsquashed_values) log_prob -= tf.math.reduce_sum( tf.math.log(1 - unsquashed_values_tanhd**2 + SMALL_NUMBER), axis=-1) return log_prob def _squash(self, raw_values): # Make sure raw_values are not too high/low (such that tanh would # return exactly 1.0/-1.0, which would lead to +/-inf log-probs). return (tf.clip_by_value( tf.math.tanh(raw_values), -1.0 + SMALL_NUMBER, 1.0 - SMALL_NUMBER) + 1.0) / 2.0 * (self.high - self.low) + \ self.low def _unsquash(self, values): return tf.math.atanh((values - self.low) / (self.high - self.low) * 2.0 - 1.0) class Deterministic(TFActionDistribution): """Action distribution that returns the input values directly. This is similar to DiagGaussian with standard deviation zero (thus only requiring the "mean" values as NN output). """ @override(ActionDistribution) def deterministic_sample(self): return self.inputs @override(TFActionDistribution) def sampled_action_logp(self): return 0.0 @override(TFActionDistribution) def _build_sample_op(self): return self.inputs @staticmethod @override(ActionDistribution) def required_model_output_shape(action_space, model_config): return np.prod(action_space.shape) class MultiActionDistribution(TFActionDistribution): """Action distribution that operates for list of actions. Args: inputs (Tensor list): A list of tensors from which to compute samples. """ def __init__(self, inputs, model, action_space, child_distributions, input_lens): # skip TFActionDistribution init ActionDistribution.__init__(self, inputs, model) self.input_lens = input_lens split_inputs = tf.split(inputs, self.input_lens, axis=1) child_list = [] for i, distribution in enumerate(child_distributions): child_list.append(distribution(split_inputs[i], model)) self.child_distributions = child_list @override(ActionDistribution) def logp(self, x): split_indices = [] for dist in self.child_distributions: if isinstance(dist, Categorical): split_indices.append(1) else: split_indices.append(tf.shape(dist.sample())[1]) split_list = tf.split(x, split_indices, axis=1) for i, distribution in enumerate(self.child_distributions): # Remove extra categorical dimension if isinstance(distribution, Categorical): split_list[i] = tf.cast( tf.squeeze(split_list[i], axis=-1), tf.int32) log_list = [ distribution.logp(split_x) for distribution, split_x in zip( self.child_distributions, split_list) ] return functools.reduce(lambda a, b: a + b, log_list) @override(ActionDistribution) def kl(self, other): kl_list = [ distribution.kl(other_distribution) for distribution, other_distribution in zip( self.child_distributions, other.child_distributions) ] return functools.reduce(lambda a, b: a + b, kl_list) @override(ActionDistribution) def entropy(self): entropy_list = [s.entropy() for s in self.child_distributions] return functools.reduce(lambda a, b: a + b, entropy_list) @override(ActionDistribution) def sample(self): return TupleActions([s.sample() for s in self.child_distributions]) @override(ActionDistribution) def deterministic_sample(self): return TupleActions( [s.deterministic_sample() for s in self.child_distributions]) @override(TFActionDistribution) def sampled_action_logp(self): p = self.child_distributions[0].sampled_action_logp() for c in self.child_distributions[1:]: p += c.sampled_action_logp() return p class Dirichlet(TFActionDistribution): """Dirichlet distribution for continuous actions that are between [0,1] and sum to 1. e.g. actions that represent resource allocation.""" def __init__(self, inputs, model): """Input is a tensor of logits. The exponential of logits is used to parametrize the Dirichlet distribution as all parameters need to be positive. An arbitrary small epsilon is added to the concentration parameters to be zero due to numerical error. See issue #4440 for more details. """ self.epsilon = 1e-7 concentration = tf.exp(inputs) + self.epsilon self.dist = tf.distributions.Dirichlet( concentration=concentration, validate_args=True, allow_nan_stats=False, ) super().__init__(concentration, model) @override(ActionDistribution) def logp(self, x): # Support of Dirichlet are positive real numbers. x is already # an array of positive numbers, but we clip to avoid zeros due to # numerical errors. x = tf.maximum(x, self.epsilon) x = x / tf.reduce_sum(x, axis=-1, keepdims=True) return self.dist.log_prob(x) @override(ActionDistribution) def entropy(self): return self.dist.entropy() @override(ActionDistribution) def kl(self, other): return self.dist.kl_divergence(other.dist) @override(TFActionDistribution) def _build_sample_op(self): return self.dist.sample() @staticmethod @override(ActionDistribution) def required_model_output_shape(action_space, model_config): return np.prod(action_space.shape)