""" Example of a fully deterministic, repeatable RLlib train run using the "seed" config key. """ import argparse import os import ray from ray import tune from ray.rllib.examples.env.env_using_remote_actor import \ CartPoleWithRemoteParamServer, ParameterStorage from ray.rllib.utils.framework import try_import_tf, try_import_torch from ray.rllib.utils.test_utils import check tf1, tf, tfv = try_import_tf() torch, nn = try_import_torch() parser = argparse.ArgumentParser() parser.add_argument("--run", type=str, default="PPO") parser.add_argument( "--framework", choices=["tf2", "tf", "tfe", "torch"], default="tf") parser.add_argument("--seed", type=int, default=42) parser.add_argument("--as-test", action="store_true") parser.add_argument("--stop-iters", type=int, default=2) if __name__ == "__main__": args = parser.parse_args() ray.init() param_storage = ParameterStorage.options(name="param-server").remote() config = { "env": CartPoleWithRemoteParamServer, "env_config": { "param_server": "param-server", }, # Use GPUs iff `RLLIB_NUM_GPUS` env var set to > 0. "num_gpus": int(os.environ.get("RLLIB_NUM_GPUS", "0")), "num_workers": 2, # parallelism "framework": args.framework, "seed": args.seed, # Simplify to run this example script faster. "train_batch_size": 100, "sgd_minibatch_size": 10, "num_sgd_iter": 5, "rollout_fragment_length": 50, } stop = { "training_iteration": args.stop_iters, } results = tune.run(args.run, config=config, stop=stop, verbose=1) results2 = tune.run(args.run, config=config, stop=stop, verbose=1) if args.as_test: check( list(results.results.values())[0]["hist_stats"], list(results2.results.values())[0]["hist_stats"]) ray.shutdown()