import collections import numpy as np import sys import itertools from typing import Dict, Iterable, List, Optional, Set, Union from ray.rllib.utils.annotations import PublicAPI, DeveloperAPI from ray.rllib.utils.compression import pack, unpack, is_compressed from ray.rllib.utils.memory import concat_aligned from ray.rllib.utils.typing import PolicyID, TensorType # Default policy id for single agent environments DEFAULT_POLICY_ID = "default_policy" @PublicAPI class SampleBatch: """Wrapper around a dictionary with string keys and array-like values. For example, {"obs": [1, 2, 3], "reward": [0, -1, 1]} is a batch of three samples, each with an "obs" and "reward" attribute. """ # Outputs from interacting with the environment OBS = "obs" CUR_OBS = "obs" NEXT_OBS = "new_obs" ACTIONS = "actions" REWARDS = "rewards" PREV_ACTIONS = "prev_actions" PREV_REWARDS = "prev_rewards" DONES = "dones" INFOS = "infos" # Extra action fetches keys. ACTION_DIST_INPUTS = "action_dist_inputs" ACTION_PROB = "action_prob" ACTION_LOGP = "action_logp" # Uniquely identifies an episode. EPS_ID = "eps_id" # Uniquely identifies a sample batch. This is important to distinguish RNN # sequences from the same episode when multiple sample batches are # concatenated (fusing sequences across batches can be unsafe). UNROLL_ID = "unroll_id" # Uniquely identifies an agent within an episode. AGENT_INDEX = "agent_index" # Value function predictions emitted by the behaviour policy. VF_PREDS = "vf_preds" @PublicAPI def __init__(self, *args, **kwargs): """Constructs a sample batch (same params as dict constructor).""" # Possible seq_lens (TxB or BxT) setup. self.time_major = kwargs.pop("_time_major", None) self.seq_lens = kwargs.pop("_seq_lens", None) self.dont_check_lens = kwargs.pop("_dont_check_lens", False) self.max_seq_len = None if self.seq_lens is not None and len(self.seq_lens) > 0: self.max_seq_len = max(self.seq_lens) # The actual data, accessible by column name (str). self.data = dict(*args, **kwargs) lengths = [] for k, v in self.data.copy().items(): assert isinstance(k, str), self lengths.append(len(v)) if isinstance(v, list): self.data[k] = np.array(v) if not lengths: raise ValueError("Empty sample batch") if not self.dont_check_lens: assert len(set(lengths)) == 1, \ "Data columns must be same length, but lens are " \ "{}".format(lengths) if self.seq_lens is not None and len(self.seq_lens) > 0: self.count = sum(self.seq_lens) else: self.count = len(next(iter(self.data.values()))) # Keeps track of new columns added after initial ones. self.new_columns = [] @PublicAPI def __len__(self): """Returns the amount of samples in the sample batch.""" return self.count @staticmethod @PublicAPI def concat_samples(samples: List["SampleBatch"]) -> \ Union["SampleBatch", "MultiAgentBatch"]: """Concatenates n data dicts or MultiAgentBatches. Args: samples (List[Dict[TensorType]]]): List of dicts of data (numpy). Returns: Union[SampleBatch, MultiAgentBatch]: A new (compressed) SampleBatch or MultiAgentBatch. """ if isinstance(samples[0], MultiAgentBatch): return MultiAgentBatch.concat_samples(samples) seq_lens = [] concat_samples = [] for s in samples: if s.count > 0: concat_samples.append(s) if s.seq_lens is not None: seq_lens.extend(s.seq_lens) out = {} for k in concat_samples[0].keys(): out[k] = concat_aligned( [s[k] for s in concat_samples], time_major=concat_samples[0].time_major) return SampleBatch( out, _seq_lens=np.array(seq_lens, dtype=np.int32), _time_major=concat_samples[0].time_major, _dont_check_lens=True) @PublicAPI def concat(self, other: "SampleBatch") -> "SampleBatch": """Returns a new SampleBatch with each data column concatenated. Args: other (SampleBatch): The other SampleBatch object to concat to this one. Returns: SampleBatch: The new SampleBatch, resulting from concating `other` to `self`. Examples: >>> b1 = SampleBatch({"a": [1, 2]}) >>> b2 = SampleBatch({"a": [3, 4, 5]}) >>> print(b1.concat(b2)) {"a": [1, 2, 3, 4, 5]} """ if self.keys() != other.keys(): raise ValueError( "SampleBatches to concat must have same columns! {} vs {}". format(list(self.keys()), list(other.keys()))) out = {} for k in self.keys(): out[k] = concat_aligned([self[k], other[k]]) return SampleBatch(out) @PublicAPI def copy(self) -> "SampleBatch": """Creates a (deep) copy of this SampleBatch and returns it. Returns: SampleBatch: A (deep) copy of this SampleBatch object. """ return SampleBatch( {k: np.array(v, copy=True) for (k, v) in self.data.items()}, _seq_lens=self.seq_lens) @PublicAPI def rows(self) -> Dict[str, TensorType]: """Returns an iterator over data rows, i.e. dicts with column values. Yields: Dict[str, TensorType]: The column values of the row in this iteration. Examples: >>> batch = SampleBatch({"a": [1, 2, 3], "b": [4, 5, 6]}) >>> for row in batch.rows(): print(row) {"a": 1, "b": 4} {"a": 2, "b": 5} {"a": 3, "b": 6} """ for i in range(self.count): row = {} for k in self.keys(): row[k] = self[k][i] yield row @PublicAPI def columns(self, keys: List[str]) -> List[any]: """Returns a list of the batch-data in the specified columns. Args: keys (List[str]): List of column names fo which to return the data. Returns: List[any]: The list of data items ordered by the order of column names in `keys`. Examples: >>> batch = SampleBatch({"a": [1], "b": [2], "c": [3]}) >>> print(batch.columns(["a", "b"])) [[1], [2]] """ out = [] for k in keys: out.append(self[k]) return out @PublicAPI def shuffle(self) -> None: """Shuffles the rows of this batch in-place.""" permutation = np.random.permutation(self.count) for key, val in self.items(): self[key] = val[permutation] @PublicAPI def split_by_episode(self) -> List["SampleBatch"]: """Splits this batch's data by `eps_id`. Returns: List[SampleBatch]: List of batches, one per distinct episode. """ slices = [] cur_eps_id = self.data["eps_id"][0] offset = 0 for i in range(self.count): next_eps_id = self.data["eps_id"][i] if next_eps_id != cur_eps_id: slices.append(self.slice(offset, i)) offset = i cur_eps_id = next_eps_id slices.append(self.slice(offset, self.count)) for s in slices: slen = len(set(s["eps_id"])) assert slen == 1, (s, slen) assert sum(s.count for s in slices) == self.count, (slices, self.count) return slices @PublicAPI def slice(self, start: int, end: int) -> "SampleBatch": """Returns a slice of the row data of this batch (w/o copying). Args: start (int): Starting index. end (int): Ending index. Returns: SampleBatch: A new SampleBatch, which has a slice of this batch's data. """ if self.seq_lens is not None and len(self.seq_lens) > 0: data = {k: v[start:end] for k, v in self.data.items()} # Fix state_in_x data. count = 0 state_start = None seq_lens = None for i, seq_len in enumerate(self.seq_lens): count += seq_len if count >= end: state_idx = 0 state_key = "state_in_{}".format(state_idx) while state_key in self.data: data[state_key] = self.data[state_key][state_start:i + 1] state_idx += 1 state_key = "state_in_{}".format(state_idx) seq_lens = list(self.seq_lens[state_start:i]) + [ seq_len - (count - end) ] assert sum(seq_lens) == (end - start) break elif state_start is None and count > start: state_start = i return SampleBatch( data, _seq_lens=np.array(seq_lens, dtype=np.int32), _time_major=self.time_major, _dont_check_lens=True) else: return SampleBatch( {k: v[start:end] for k, v in self.data.items()}, _seq_lens=None, _time_major=self.time_major) @PublicAPI def timeslices(self, k: int) -> List["SampleBatch"]: """Returns SampleBatches, each one representing a k-slice of this one. Will start from timestep 0 and produce slices of size=k. Args: k (int): The size (in timesteps) of each returned SampleBatch. Returns: List[SampleBatch]: The list of (new) SampleBatches (each one of size k). """ out = [] i = 0 while i < self.count: out.append(self.slice(i, i + k)) i += k return out @PublicAPI def keys(self) -> Iterable[str]: """ Returns: Iterable[str]: The keys() iterable over `self.data`. """ return self.data.keys() @PublicAPI def items(self) -> Iterable[TensorType]: """ Returns: Iterable[TensorType]: The values() iterable over `self.data`. """ return self.data.items() @PublicAPI def get(self, key: str) -> Optional[TensorType]: """Returns one column (by key) from the data or None if key not found. Args: key (str): The key (column name) to return. Returns: Optional[TensorType]: The data under the given key. None if key not found in data. """ return self.data.get(key) @PublicAPI def size_bytes(self) -> int: """ Returns: int: The overall size in bytes of the data buffer (all columns). """ return sum(sys.getsizeof(d) for d in self.data.values()) @PublicAPI def __getitem__(self, key: str) -> TensorType: """Returns one column (by key) from the data. Args: key (str): The key (column name) to return. Returns: TensorType: The data under the given key. """ return self.data[key] @PublicAPI def __setitem__(self, key, item) -> None: """Inserts (overrides) an entire column (by key) in the data buffer. Args: key (str): The column name to set a value for. item (TensorType): The data to insert. """ if key not in self.data: self.new_columns.append(key) self.data[key] = item @DeveloperAPI def compress(self, bulk: bool = False, columns: Set[str] = frozenset(["obs", "new_obs"])) -> None: """Compresses the data buffers (by column) in place. Args: bulk (bool): Whether to compress across the batch dimension (0) as well. If False will compress n separate list items, where n is the batch size. columns (Set[str]): The columns to compress. Default: Only compress the obs and new_obs columns. """ for key in columns: if key in self.data: if bulk: self.data[key] = pack(self.data[key]) else: self.data[key] = np.array( [pack(o) for o in self.data[key]]) @DeveloperAPI def decompress_if_needed(self, columns: Set[str] = frozenset( ["obs", "new_obs"])) -> "SampleBatch": """Decompresses data buffers (per column if not compressed) in place. Args: columns (Set[str]): The columns to decompress. Default: Only decompress the obs and new_obs columns. Returns: SampleBatch: This very SampleBatch. """ for key in columns: if key in self.data: arr = self.data[key] if is_compressed(arr): self.data[key] = unpack(arr) elif len(arr) > 0 and is_compressed(arr[0]): self.data[key] = np.array( [unpack(o) for o in self.data[key]]) return self def __str__(self): return "SampleBatch({})".format(str(self.data)) def __repr__(self): return "SampleBatch({})".format(str(self.data)) def __iter__(self): return self.data.__iter__() def __contains__(self, x): return x in self.data @PublicAPI class MultiAgentBatch: """A batch of experiences from multiple agents in the environment. Attributes: policy_batches (Dict[PolicyID, SampleBatch]): Mapping from policy ids to SampleBatches of experiences. count (int): The number of env steps in this batch. """ @PublicAPI def __init__(self, policy_batches: Dict[PolicyID, SampleBatch], env_steps: int): """Initialize a MultiAgentBatch object. Args: policy_batches (Dict[PolicyID, SampleBatch]): Mapping from policy ids to SampleBatches of experiences. env_steps (int): The number of environment steps in the environment this batch contains. This will be less than the number of transitions this batch contains across all policies in total. """ for v in policy_batches.values(): assert isinstance(v, SampleBatch) self.policy_batches = policy_batches # Called "count" for uniformity with SampleBatch. # Prefer to access this via the `env_steps()` method when possible # for clarity. self.count = env_steps @PublicAPI def env_steps(self) -> int: """The number of env steps (there are >= 1 agent steps per env step). Returns: int: The number of environment steps contained in this batch. """ return self.count @PublicAPI def agent_steps(self) -> int: """The number of agent steps (there are >= 1 agent steps per env step). Returns: int: The number of agent steps total in this batch. """ ct = 0 for batch in self.policy_batches.values(): ct += batch.count return ct @PublicAPI def timeslices(self, k: int) -> List["MultiAgentBatch"]: """Returns k-step batches holding data for each agent at those steps. For examples, suppose we have agent1 observations [a1t1, a1t2, a1t3], for agent2, [a2t1, a2t3], and for agent3, [a3t3] only. Calling timeslices(1) would return three MultiAgentBatches containing [a1t1, a2t1], [a1t2], and [a1t3, a2t3, a3t3]. Calling timeslices(2) would return two MultiAgentBatches containing [a1t1, a1t2, a2t1], and [a1t3, a2t3, a3t3]. This method is used to implement "lockstep" replay mode. Note that this method does not guarantee each batch contains only data from a single unroll. Batches might contain data from multiple different envs. """ from ray.rllib.evaluation.sample_batch_builder import \ SampleBatchBuilder # Build a sorted set of (eps_id, t, policy_id, data...) steps = [] for policy_id, batch in self.policy_batches.items(): for row in batch.rows(): steps.append((row[SampleBatch.EPS_ID], row["t"], row["agent_index"], policy_id, row)) steps.sort() finished_slices = [] cur_slice = collections.defaultdict(SampleBatchBuilder) cur_slice_size = 0 def finish_slice(): nonlocal cur_slice_size assert cur_slice_size > 0 batch = MultiAgentBatch( {k: v.build_and_reset() for k, v in cur_slice.items()}, cur_slice_size) cur_slice_size = 0 finished_slices.append(batch) # For each unique env timestep. for _, group in itertools.groupby(steps, lambda x: x[:2]): # Accumulate into the current slice. for _, _, _, policy_id, row in group: cur_slice[policy_id].add_values(**row) cur_slice_size += 1 # Slice has reached target number of env steps. if cur_slice_size >= k: finish_slice() assert cur_slice_size == 0 if cur_slice_size > 0: finish_slice() assert len(finished_slices) > 0, finished_slices return finished_slices @staticmethod @PublicAPI def wrap_as_needed( policy_batches: Dict[PolicyID, SampleBatch], env_steps: int) -> Union[SampleBatch, "MultiAgentBatch"]: """Returns SampleBatch or MultiAgentBatch, depending on given policies. Args: policy_batches (Dict[PolicyID, SampleBatch]): Mapping from policy ids to SampleBatch. env_steps (int): Number of env steps in the batch. Returns: Union[SampleBatch, MultiAgentBatch]: The single default policy's SampleBatch or a MultiAgentBatch (more than one policy). """ if len(policy_batches) == 1 and DEFAULT_POLICY_ID in policy_batches: return policy_batches[DEFAULT_POLICY_ID] return MultiAgentBatch( policy_batches=policy_batches, env_steps=env_steps) @staticmethod @PublicAPI def concat_samples(samples: List["MultiAgentBatch"]) -> "MultiAgentBatch": """Concatenates a list of MultiAgentBatches into a new MultiAgentBatch. Args: samples (List[MultiAgentBatch]): List of MultiagentBatch objects to concatenate. Returns: MultiAgentBatch: A new MultiAgentBatch consisting of the concatenated inputs. """ policy_batches = collections.defaultdict(list) env_steps = 0 for s in samples: if not isinstance(s, MultiAgentBatch): raise ValueError( "`MultiAgentBatch.concat_samples()` can only concat " "MultiAgentBatch types, not {}!".format(type(s).__name__)) for key, batch in s.policy_batches.items(): policy_batches[key].append(batch) env_steps += s.env_steps() out = {} for key, batches in policy_batches.items(): out[key] = SampleBatch.concat_samples(batches) return MultiAgentBatch(out, env_steps) @PublicAPI def copy(self) -> "MultiAgentBatch": """Deep-copies self into a new MultiAgentBatch. Returns: MultiAgentBatch: The copy of self with deep-copied data. """ return MultiAgentBatch( {k: v.copy() for (k, v) in self.policy_batches.items()}, self.count) @PublicAPI def size_bytes(self) -> int: """ Returns: int: The overall size in bytes of all policy batches (all columns). """ return sum(b.size_bytes() for b in self.policy_batches.values()) @DeveloperAPI def compress(self, bulk: bool = False, columns: Set[str] = frozenset(["obs", "new_obs"])) -> None: """Compresses each policy batch (per column) in place. Args: bulk (bool): Whether to compress across the batch dimension (0) as well. If False will compress n separate list items, where n is the batch size. columns (Set[str]): Set of column names to compress. """ for batch in self.policy_batches.values(): batch.compress(bulk=bulk, columns=columns) @DeveloperAPI def decompress_if_needed(self, columns: Set[str] = frozenset( ["obs", "new_obs"])) -> "MultiAgentBatch": """Decompresses each policy batch (per column), if already compressed. Args: columns (Set[str]): Set of column names to decompress. Returns: MultiAgentBatch: This very MultiAgentBatch. """ for batch in self.policy_batches.values(): batch.decompress_if_needed(columns) return self def __str__(self): return "MultiAgentBatch({}, env_steps={})".format( str(self.policy_batches), self.count) def __repr__(self): return "MultiAgentBatch({}, env_steps={})".format( str(self.policy_batches), self.count)