import unittest import ray import ray.rllib.agents.impala as impala from ray.rllib.policy.sample_batch import DEFAULT_POLICY_ID from ray.rllib.utils.framework import try_import_tf from ray.rllib.utils.test_utils import check_compute_single_action, \ framework_iterator tf1, tf, tfv = try_import_tf() class TestIMPALA(unittest.TestCase): @classmethod def setUpClass(cls) -> None: ray.init() @classmethod def tearDownClass(cls) -> None: ray.shutdown() def test_impala_compilation(self): """Test whether an ImpalaTrainer can be built with both frameworks.""" config = impala.DEFAULT_CONFIG.copy() num_iterations = 1 for _ in framework_iterator(config): local_cfg = config.copy() for env in ["Pendulum-v0", "CartPole-v0"]: print("Env={}".format(env)) print("w/o LSTM") # Test w/o LSTM. local_cfg["model"]["use_lstm"] = False local_cfg["num_aggregation_workers"] = 0 trainer = impala.ImpalaTrainer(config=local_cfg, env=env) for i in range(num_iterations): print(trainer.train()) check_compute_single_action(trainer) trainer.stop() # Test w/ LSTM. print("w/ LSTM") local_cfg["model"]["use_lstm"] = True local_cfg["model"]["lstm_use_prev_action"] = True local_cfg["model"]["lstm_use_prev_reward"] = True local_cfg["num_aggregation_workers"] = 2 trainer = impala.ImpalaTrainer(config=local_cfg, env=env) for i in range(num_iterations): print(trainer.train()) check_compute_single_action( trainer, include_state=True, include_prev_action_reward=True) trainer.stop() def test_impala_lr_schedule(self): config = impala.DEFAULT_CONFIG.copy() config["lr_schedule"] = [ [0, 0.0005], [10000, 0.000001], ] local_cfg = config.copy() trainer = impala.ImpalaTrainer(config=local_cfg, env="CartPole-v0") def get_lr(result): return result["info"]["learner"][DEFAULT_POLICY_ID]["cur_lr"] try: r1 = trainer.train() r2 = trainer.train() assert get_lr(r2) < get_lr(r1), (r1, r2) finally: trainer.stop() if __name__ == "__main__": import pytest import sys sys.exit(pytest.main(["-v", __file__]))