from gym.spaces import Box, Discrete import logging from typing import Tuple, Type import ray from ray.rllib.algorithms.maml.maml_torch_policy import MAMLTorchPolicy from ray.rllib.models.catalog import ModelCatalog from ray.rllib.models.modelv2 import ModelV2 from ray.rllib.models.torch.torch_action_dist import TorchDistributionWrapper from ray.rllib.utils.error import UnsupportedSpaceException from ray.rllib.utils.framework import try_import_torch torch, nn = try_import_torch() logger = logging.getLogger(__name__) class MBMPOTorchPolicy(MAMLTorchPolicy): def __init__(self, observation_space, action_space, config): # Validate spaces. # Only support single Box or single Discrete spaces. if not isinstance(action_space, (Box, Discrete)): raise UnsupportedSpaceException( "Action space ({}) of {} is not supported for " "MB-MPO. Must be [Box|Discrete].".format(action_space, self) ) # If Box, make sure it's a 1D vector space. elif isinstance(action_space, Box) and len(action_space.shape) > 1: raise UnsupportedSpaceException( "Action space ({}) of {} has multiple dimensions " "{}. ".format(action_space, self, action_space.shape) + "Consider reshaping this into a single dimension Box space " "or using the multi-agent API." ) config = dict(ray.rllib.algorithms.mbmpo.mbmpo.DEFAULT_CONFIG, **config) super().__init__(observation_space, action_space, config) def make_model_and_action_dist( self, ) -> Tuple[ModelV2, Type[TorchDistributionWrapper]]: """Constructs the necessary ModelV2 and action dist class for the Policy. Args: obs_space (gym.spaces.Space): The observation space. action_space (gym.spaces.Space): The action space. config (TrainerConfigDict): The SAC trainer's config dict. Returns: ModelV2: The ModelV2 to be used by the Policy. Note: An additional target model will be created in this function and assigned to `policy.target_model`. """ # Get the output distribution class for predicting rewards and next-obs. self.distr_cls_next_obs, num_outputs = ModelCatalog.get_action_dist( self.observation_space, self.config, dist_type="deterministic", framework="torch", ) # Build one dynamics model if we are a Worker. # If we are the main MAML learner, build n (num_workers) dynamics Models # for being able to create checkpoints for the current state of training. device = ( torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu") ) self.dynamics_model = ModelCatalog.get_model_v2( self.observation_space, self.action_space, num_outputs=num_outputs, model_config=self.config["dynamics_model"], framework="torch", name="dynamics_ensemble", ).to(device) action_dist, num_outputs = ModelCatalog.get_action_dist( self.action_space, self.config, framework="torch" ) # Create the pi-model and register it with the Policy. self.pi = ModelCatalog.get_model_v2( self.observation_space, self.action_space, num_outputs=num_outputs, model_config=self.config["model"], framework="torch", name="policy_model", ) return self.pi, action_dist