slateq-interest-evolution-recsim-env: env: ray.rllib.examples.env.recommender_system_envs_with_recsim.InterestEvolutionRecSimEnv run: SlateQ pass_criteria: episode_reward_mean: 160.0 timesteps_total: 300000 stop: time_total_s: 7200 config: # increase num sampling workers for faster sampling. num_workers: 12 # RLlib/RecSim wrapper specific settings: env_config: # Env class specified above takes one `config` arg in its c'tor: config: # Each step, sample `num_candidates` documents using the env-internal # document sampler model (a logic that creates n documents to select # the slate from). resample_documents: true num_candidates: 50 # How many documents to recommend (out of `num_candidates`) each # timestep? slate_size: 2 # Should the action space be purely Discrete? Useful for algos that # don't support MultiDiscrete (e.g. DQN or Bandits). # SlateQ handles MultiDiscrete action spaces. convert_to_discrete_action_space: false seed: 0 num_gpus: 1 exploration_config: warmup_timesteps: 20000 epsilon_timesteps: 70000 replay_buffer_config: capacity: 500000 lr: 0.00025 metrics_num_episodes_for_smoothing: 200