"""RNN utils for RLlib. The main trick here is that we add the time dimension at the last moment. The non-LSTM layers of the model see their inputs as one flat batch. Before the LSTM cell, we reshape the input to add the expected time dimension. During postprocessing, we dynamically pad the experience batches so that this reshaping is possible. Note that this padding strategy only works out if we assume zero inputs don't meaningfully affect the loss function. This happens to be true for all the current algorithms: https://github.com/ray-project/ray/issues/2992 """ import numpy as np from ray.rllib.utils.annotations import DeveloperAPI from ray.rllib.utils import try_import_tf tf = try_import_tf() @DeveloperAPI def add_time_dimension(padded_inputs, seq_lens): """Adds a time dimension to padded inputs. Arguments: padded_inputs (Tensor): a padded batch of sequences. That is, for seq_lens=[1, 2, 2], then inputs=[A, *, B, B, C, C], where A, B, C are sequence elements and * denotes padding. seq_lens (Tensor): the sequence lengths within the input batch, suitable for passing to tf.nn.dynamic_rnn(). Returns: Reshaped tensor of shape [NUM_SEQUENCES, MAX_SEQ_LEN, ...]. """ # Sequence lengths have to be specified for LSTM batch inputs. The # input batch must be padded to the max seq length given here. That is, # batch_size == len(seq_lens) * max(seq_lens) padded_batch_size = tf.shape(padded_inputs)[0] max_seq_len = padded_batch_size // tf.shape(seq_lens)[0] # Dynamically reshape the padded batch to introduce a time dimension. new_batch_size = padded_batch_size // max_seq_len new_shape = ([new_batch_size, max_seq_len] + padded_inputs.get_shape().as_list()[1:]) return tf.reshape(padded_inputs, new_shape) @DeveloperAPI def chop_into_sequences(episode_ids, unroll_ids, agent_indices, feature_columns, state_columns, max_seq_len, dynamic_max=True, shuffle=False, _extra_padding=0): """Truncate and pad experiences into fixed-length sequences. Arguments: episode_ids (list): List of episode ids for each step. unroll_ids (list): List of identifiers for the sample batch. This is used to make sure sequences are cut between sample batches. agent_indices (list): List of agent ids for each step. Note that this has to be combined with episode_ids for uniqueness. feature_columns (list): List of arrays containing features. state_columns (list): List of arrays containing LSTM state values. max_seq_len (int): Max length of sequences before truncation. dynamic_max (bool): Whether to dynamically shrink the max seq len. For example, if max len is 20 and the actual max seq len in the data is 7, it will be shrunk to 7. shuffle (bool): Whether to shuffle the sequence outputs. _extra_padding (int): Add extra padding to the end of sequences. Returns: f_pad (list): Padded feature columns. These will be of shape [NUM_SEQUENCES * MAX_SEQ_LEN, ...]. s_init (list): Initial states for each sequence, of shape [NUM_SEQUENCES, ...]. seq_lens (list): List of sequence lengths, of shape [NUM_SEQUENCES]. Examples: >>> f_pad, s_init, seq_lens = chop_into_sequences( episode_ids=[1, 1, 5, 5, 5, 5], unroll_ids=[4, 4, 4, 4, 4, 4], agent_indices=[0, 0, 0, 0, 0, 0], feature_columns=[[4, 4, 8, 8, 8, 8], [1, 1, 0, 1, 1, 0]], state_columns=[[4, 5, 4, 5, 5, 5]], max_seq_len=3) >>> print(f_pad) [[4, 4, 0, 8, 8, 8, 8, 0, 0], [1, 1, 0, 0, 1, 1, 0, 0, 0]] >>> print(s_init) [[4, 4, 5]] >>> print(seq_lens) [2, 3, 1] """ prev_id = None seq_lens = [] seq_len = 0 unique_ids = np.add( np.add(episode_ids, agent_indices), np.array(unroll_ids) << 32) for uid in unique_ids: if (prev_id is not None and uid != prev_id) or \ seq_len >= max_seq_len: seq_lens.append(seq_len) seq_len = 0 seq_len += 1 prev_id = uid if seq_len: seq_lens.append(seq_len) assert sum(seq_lens) == len(unique_ids) seq_lens = np.array(seq_lens) # Dynamically shrink max len as needed to optimize memory usage if dynamic_max: max_seq_len = max(seq_lens) + _extra_padding feature_sequences = [] for f in feature_columns: f = np.array(f) f_pad = np.zeros((len(seq_lens) * max_seq_len, ) + np.shape(f)[1:]) seq_base = 0 i = 0 for l in seq_lens: for seq_offset in range(l): f_pad[seq_base + seq_offset] = f[i] i += 1 seq_base += max_seq_len assert i == len(unique_ids), f feature_sequences.append(f_pad) initial_states = [] for s in state_columns: s = np.array(s) s_init = [] i = 0 for l in seq_lens: s_init.append(s[i]) i += l initial_states.append(np.array(s_init)) if shuffle: permutation = np.random.permutation(len(seq_lens)) for i, f in enumerate(feature_sequences): orig_shape = f.shape f = np.reshape(f, (len(seq_lens), -1) + f.shape[1:]) f = f[permutation] f = np.reshape(f, orig_shape) feature_sequences[i] = f for i, s in enumerate(initial_states): s = s[permutation] initial_states[i] = s seq_lens = seq_lens[permutation] return feature_sequences, initial_states, seq_lens